Semi-Supervised Extractive Speech Summarization via Co-Training Algorithm

Shasha Xie1, Hui Lin2, Yang Liu1

1Department of Computer Science, The University of Texas at Dallas, U.S.A
2Department of Electrical Engineering, University of Washington, U.S.A
{shasha,yangl}@hlt.utdallas.edu, hlin@ee.washington.edu

Abstract

Supervised methods for extractive speech summarization require a large training set. Summary annotation is often expensive and time consuming. In this paper, we exploit semi-supervised approaches to leverage unlabeled data. In particular, we investigate co-training for the task of extractive meeting summarization. Compared with text summarization, speech summarization task has its unique characteristic in that the features naturally split into two sets: textual features and prosodic/acoustic features. Such characteristic makes co-training an appropriate approach for semi-supervised speech summarization. Our experiments on the ICSI meeting corpus show that by utilizing the unlabeled data, co-training significantly improves summarization performance when only a small amount of labeled data is available.

Index Terms: extractive meeting summarization, co-training, semi-supervised learning

1. Introduction

Automatic meeting summarization is a very useful technique that can help users to browse a large amount of meeting recordings. In this paper, we investigate extractive summarization, in which the most representative segments from the original document are selected and concatenated together to form a final summary. This task can be formulated as a binary classification problem and solved using supervised learning approaches. Each training and testing instance (i.e., a sentence) is represented by a set of indicative features, and positive or negative labels are used to indicate whether this sentence is in the summary or not. In previous work, various classification models have been investigated, such as hidden Markov model (HMM), conditional random fields (CRF), maximum entropy classifier, and support vector machines (SVM) \[1, 2, 3, 4\].

Learning a summarization classifier requires a large amount of labeled data for training. Summary annotation is often difficult, expensive, and time consuming. Annotation of meeting recordings is especially hard because the documents to be summarized are transcripts of natural meetings that have very spontaneous style, contain many disfluencies, have multiple speakers, are less coherent in content, and probably have a lot of errors if the transcripts are from automatic speech recognition systems. It is very hard to read and understand the document, not to mention extracting the summary. On the contrary, meeting recordings and their transcripts are relatively much easier to collect. This situation creates a good opportunity for semi-supervised learning that can use a large amount of unlabeled data, together with the labeled data, to build better classifiers. This technique has been shown to be very promising in many speech and language processing tasks, such as question classification, web classification, word-sense disambiguation and prosodic event detection \[5, 6, 7, 8\]. However, there is relatively less work of using semi-supervised learning approaches for the automatic summarization task. In \[9\], the authors used co-training algorithm to exploit unlabeled data for extractive text summarization. Two classifiers (probabilistic SVM and naive Bayesian classifier) were trained on the same feature spaces. One assumption of co-training, however, is that features can be split into two sets. To the best of our knowledge, there is little research on the application of semi-supervised learning techniques on extractive speech summarization, except \[10\] that uses active learning.

In this paper, we use the co-training algorithm \[11\] to explore semi-surprised learning in speech summarization. Co-training assumes that features can be split into two sets, which are conditionally independent given the class, and each of which is sufficient to train a good classifier. Unlike in text summarization (where only textual information is available), we can easily extract two different views of features for speech summarization: one from the textual transcripts, and the other from the speech recordings.1 Previous work \[12\] showed that each of these two feature sets can achieve good performance for speech summarization. Also, as these two sets of features are essentially different, we can reasonably assume that the conditional independence assumption holds. Therefore, co-training is a very natural and appropriate approach for semi-supervised speech summarization. Our experimental results on the ICSI meeting corpus show that the co-training algorithm can effectively use the unlabeled data and improve summarization performance upon only using a small set of labeled data.

2. Corpus

We use the ICSI meeting corpus \[13\], which contains 75 recordings from natural meetings. Each meeting is about an hour long and has multiple speakers. These meetings have been manually transcribed and annotated with dialog acts (DA), topic segments, and extractive summaries. The same 6 meetings as in \[2, 4, 12\] are used as the test set. Furthermore, 6 other meetings are randomly selected to construct a development set, and the remaining meetings are used for training. We use three reference summaries from different annotators for each meeting in the test set. For the training and development set, we only have one reference summary. The lengths of the reference summaries are not fixed and vary across annotators and meetings.

1Note that in this paper we use \textit{textual} features to represent non-prosodic features, which include information that is not simply extracted based on plain text, such as speaker related information.
The average word compression ratio, which is the ratio of the number of words in the summary and the original meeting, is 14.3%, with a standard deviation of 2.9% for the test set. These statistics are similar for the training set. In this paper, we extract the summaries with a word compression ratio of 15%. The sentence summarization units we use are based on the annotated DA boundaries. All the experiments are performed using human transcripts.

To evaluate summarization performance, we use ROUGE [14], which has been used in previous studies of speech and text summarization. ROUGE compares the system-generated summary with reference summaries (there can be more than one reference summary), and measures different matches, such as N-gram, longest common sequence, and skip bigrams. In this paper, we report ROUGE-1 F-measure scores to make our results comparable with previous work.

3. Supervised Extractive Summarization

The extractive summarization task can be considered as a binary classification problem and solved using supervised learning approaches. The label for each instance represents whether it is a summary sentence or not. Each training and testing sample (i.e., a sentence) is represented by a large set of indicative features. We use support vector machines (SVM) (the LibSVM implementation [15]) as the classifier because of its superior performance in many binary classification tasks. During training, an SVM model is trained using the labeled training data. Then for each sentence in the test set, we predict its confidence score of being included into the summary. The summary for the test document is obtained by selecting the sentences with highest scores until the desired compression ratio is reached. For meeting summarization, the features we use can be naturally split into two different views, textual and prosodic/acoustic features, which are described below.

3.1. Textual Features

The textual features we use are described in detail in [4], including lexical, discourse, structural and topic-related information. The lexical features include the sentence length, the number of words in each sentence after removing stop words, the number of frequent words and bigrams, and the number of nouns or pronouns that appear for the first time in a sentence. In addition, we derive various TF (term frequency) and IDF (inverse document frequency) related features (e.g., max, mean, sum). The cosine similarity between the sentence and the entire meeting is also included in the feature set. We compute some topic-related features to capture the characteristics of different topics within a meeting. Furthermore, because the meeting corpus has multiple participants, we create some features to indicate speaker information, such as whether the sentence is said by main speakers (measured by the words they speak in the meeting), whether there is a speaker change compared to the previous sentence, and how term usage varies across speakers in a given meeting. In total, there are 57 features in this category.

3.2. Prosodic/Acoustic Features

With the availability of meeting recordings, we also extract prosodic/acoustic features for each sentence sample. We use Praat [16] to compute the raw pitch and energy values, and derive various features from these. There are 13 original features including five F0 related features, five energy related features, the sentence duration, and two features representing the speaking rate. In addition to these raw features, we have different normalized features based on various information, such as the speaker, the topic segmentation, and contextual information. Finally, we include the prosodic delta features — the difference between the current instance’s feature values to its previous M and next M instances. The total number of features for this category is 189. Our previous research showed that using these prosodic features alone yielded better performance than that of using the textual features. More details can be found in [12].

4. Co-Training Algorithm for Meeting Summarization

Co-training algorithm was introduced to increase the classification accuracy by exploiting the information from a large amount of unlabeled data, together with a small set of labeled data [11]. Co-training assumes that the features can be split into two independent sets, and that each set is sufficient to train a good classifier. Initially two separate classifiers are trained with the labeled data, on the two sub-feature sets respectively. Each classifier then classifies the unlabeled data, selects the samples that they feel most confident with, and uses these automatically labeled samples along with the original labeled data to “teach” the other classifier. This process iterates until the classification performance stabilizes, or all the unlabeled data is used, or after a certain number of iterations. There are several possible ways to apply co-training to extractive speech summarization. We investigate two methods in this study.

4.1. Sentence-based Selection

In the classification setup for extractive summarization, each training or testing instance is a sentence from the document to be summarized, and positive or negative labels are used to indicate whether or not this sentence is in the summary. We therefore use sentences as the basic selection units in each co-training iteration. Precisely, p unlabeled sentences are labeled as positive (summary sentences) and n unlabeled sentences are labeled as negative in each iteration based on the confidence scores of the current classifier’s prediction. These p + n sentences are then added into the original training set to form a new train set. The detail of the algorithm is described in Algorithm 1, which basically follows the standard procedure of co-training.

Algorithm 1 Co-Training for Extractive Speech Summarization

Let L be the set of labeled training sentences.
Let U be the set of unlabeled training sentences.
Each sentence is represented by two feature sets $\{F_1, F_2\}$, representing textual and prosodic features respectively.

while $U \neq \emptyset$ do

Train the first classifier C_1 on L using F_1.
Train the second classifier C_2 on L using F_2.

for each classifier $C_i, (i = 1, 2)$ do

(a) For each sentence in U (represented by F_1), C_i predicts its posterior probabilities of being labeled as positive;
(b) C_i chooses p sentences (P) that it most confidently labels as positive and n sentences (N) that it most confidently labels as negative from U;
(c) C_i removes P and N from U;
(d) C_i adds P to L with positive labels, and N to L with negative labels.

end for

end while

2523
Note that for extractive summarization task, the positive samples are only a small percent of all the instances in the document (i.e. summary is always compact). For example, in the ICSI meeting corpus the average percentage of the positive samples is 6.62%. In order to be consistent with the original training data distribution, we select more negative samples in each iteration than positive ones. We use \(n = \alpha p \), where \(\alpha \) is the ratio of the number of negative samples to the number of positive samples in the corpus (\(\alpha = 15 \) in our case).

4.2. Document-based Selection

In sentence-based selection, the classifier labels sentences independently, regardless which document a sentence belongs to. In summary annotation, however, the decision for each sentence is not made independently, rather it is made by considering the entire document. This is a key difference between the classification setup for summarization vs. other classical classification tasks. In order to be consistent with human labeling process, we could use documents as the basic selection units such that an entire document can be included into the training set. Similar to the sentence-based selection method above, we select the documents that the classifiers are most confident with, and add all the sentences in these documents into the training set for next iteration. To assign a confidence score to each document, we take the classifier’s average confidence scores for all the sentences in the document. The confidence score for each sentence is estimated by taking the negative entropy of the posterior distribution. At each iteration, the documents with high confidence scores are selected into the labeled training set. For each of the selected documents, we select the top \(\frac{100\%}{n} \) of its sentences that the classifier most confidently labels as positive. These sentences are labeled as positive, and the rest are labeled as negative.

5. Experimental Results

For co-training, we first train two classifiers using the labeled data, on the textual and prosodic feature sets respectively. Then the additional training samples are iteratively selected according to the predictions from each classifier. After co-training, we have two classifiers trained from the textual and prosodic features respectively. We then extract the summaries for each document in the development set using these two classifiers. In order to evaluate the effect of the size of the initial labeled data, we use different size, starting from 10% of the training data to all of it. When a subset of the training set is used, the rest is treated as unlabeled data (since we do not have additional meeting data with similar style and topics). The subset of labeled data is randomly selected from the training set. For each setup, we run 10 independent trials, and report the average score. Figure 1 shows the co-training results using textual features (upper figure) and prosodic features (lower graph) on the development set. For a comparison, we also include the baseline results of supervised learning (dotted line in the figure) that uses the initial labeled data without any unlabeled data for the two feature sets respectively.

From Figure 1, we can see that for the supervised baseline, in general performance improves when using more data for training, which is as expected. The worst results are always observed when the labeled training data is 10% of the original data set. However, the best result is not necessarily obtained using all the labeled data for training. The reason might be that more labeled data induces more noise for training, because we only have one annotator for the documents in the training set, and previous work showed that the human annotation agreement for summarization task is quite low. We also evaluated using textual and prosodic features together for training, and found that using all the features yielded better performance than using only textual features, but worse than using only prosodic features. Therefore in the following we only use the baseline results using the two individual views. Overall, the baseline summarization results are very competitive comparing to those reported in previous work.

Using sentence-based selection, co-training achieves significantly better performance than that of only using the labeled data, on both textual and prosodic features. Consistent improvements are achieved on different sizes of labeled data. The improvement is more obvious when the labeled training data set is small. When increasing the labeled data set, the difference between the co-training and baseline results decreases, since the unlabeled data that co-training algorithm exploits is getting smaller. Another interesting observation is that the results on textual features are remarkably improved by co-training, which are now competitive to the results of using prosodic features. This may be partly because of the original better performance of the prosodic classifier that adds more correct samples for textual classifier training.

For the document-based sample selection, there is no consistent improvement over the baseline results, and for some of the setups it is even worse than the baseline. One possible reason for that is that during co-training, although we select the documents with the highest confidence scores at each iteration, the classifier is not necessarily confident about all of the sentences in the document. In other words, the chance of of adding misclassified samples increases, which could have potential impact on the learning and labeling process in the following iter-
Co-training of sentences and acoustic/prosodic features, are naturally available, making co-training a good choice of semi-supervised speech summarization. Our experimental results on the ICSI meeting corpus verify this claim. We showed that co-training with sentences as the selection units can effectively improve the summarization performance evaluated by ROUGE scores. Both classifiers trained using textual and prosodic features work better than only using the labeled data, with more gain for the relatively weak classifier (using textual features). In the future work we will investigate other sample selection criteria that are more geared towards the summarization task. We will also investigate other semi-supervised learning algorithms, such as transductive SVM or graph-based semi-supervised learning approaches.

7. Acknowledgments

The authors thank Dilek Hakkani-Tür for the help with prosodic features. This work is supported by NSF award IIS-0845484. Any opinions expressed in this work are those of the authors and do not necessarily reflect the views of NSF.

8. References

