Learning speaker normalization using semisupervised manifold alignment

Andrew R. Plummer1, Mary E. Beckman1, Mikhail Belkin2, Eric Fosler-Lussier1,2, Benjamin Munson3

1Department of Linguistics, The Ohio State University, Columbus, OH, USA
2Dept. of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
3Department of Speech-Language-Hearing Sciences, University of Minnesota, USA
\{plummer,mbeckman\}@ling.osu.edu, \{mbelkin,fosler\}@cse.osu.edu, munso005@umn.edu

Abstract

As a child acquires language, he or she: perceives acoustic information in his or her surrounding environment; identifies portions of the ambient acoustic information as language-related; and associates that language-related information with his or her perception of his or her own language-related acoustic productions. The present work models the third task. We use a semisupervised alignment algorithm based on manifold learning. We discuss the concepts behind this approach, and the application of the algorithm to this task. We present experimental evidence indicating the usefulness of manifold alignment in learning speaker normalization.

Index Terms: speaker normalization, manifold alignment, language acquisition

1. Introduction

As infants acquire language, they: perceive acoustic information in their surrounding environment; identify portions of the ambient acoustic information as language-related; and associate that language-related information with their perception of their own language-related acoustic productions. The present work focuses on the third action, called the association task, composed of the following subtasks:

- **GROUPING.** Infants need to group together adult signals they perceive as similar. Infants also need to group together their own signals that they perceive as similar.
- **MAPPING.** Infants need to map groups of adult signals to groups of infant signals in a reasonable way. For example, an adult /a/ must be mapped to an infant /a/.

In this paper we describe an acquisition model that incorporates both GROUPING and MAPPING. That is, we provide a full model of the association task, focusing primarily on MAPPING. Prior acquisition models address GROUPING, whereas MAPPING is treated in preprocessing, or simply omitted. For example, \cite{1} uses a neural network-based approach wherein infant and adult acoustic productions are modeled using a neural map. The map is trained on synthetic data intended to represent the babbling of an infant, and acoustic data derived from vowels segmented from actual adult speech. Peaks in the babbling output more or less coincide with peaks in the adult input. Since the synthesized data ranges over the adult vowel space, the natural differences between infant acoustics and adult acoustics are not accounted for. That is, MAPPING is omitted from the model. The acquisition model in \cite{2}, which builds on \cite{1}, models disjoint infant and adult vowel spaces using a preprocessing normalization step that maps the two spaces into a common space. That is, MAPPING is treated prior to learning.

The difficulty of the MAPPING task appears in other domains, such as speech recognition and sociophonetics \cite{3, 4}, that handle data drawn from multiple speakers. Typically, a normalization algorithm is applied to the acoustic data before analysis is carried out. The fact of cross-language differences in speaker effects indicates that normalization is a learned process \cite{5}. In this light, MAPPING is performing speaker normalization. The challenge is to model the learning of this process.

We approach this challenge using recent developments in manifold learning in speech analysis \cite{6, 7, 8}. We conceptualize the adult and infant vowel spaces as geometrically similar low-dimensional manifolds (Section 2), and use a manifold-based laplacian classifier \cite{9} to perform the GROUPING task (Section 3). Given the geometric similarity of the adult and infant spaces, we model MAPPING as a continuous transformation using a semisupervised manifold alignment algorithm \cite{10} (Section 3). We describe a model that incorporates both components of the association task in vowel acquisition (Section 4). Finally, we measure the model’s potential usefulness and discuss improvements and feasible expansions on the present work (Section 5).

We conclude this section by formalizing the (semisupervised) association task. We make the following simplifying assumptions: (i) The ambient acoustic information is only that produced by an adult woman (adult) and a six-month-old infant. (ii) The acoustic information is vocalic (thus GROUPING yields groups of vowels). (iii) The number of adult and infant vowel groups is the same. (iv) Geometric relationships between adult vowel groups are preserved by MAPPING. This ensures that adult vowel groups are reasonably mapped to infant vowel groups. (v) There is a set of exemplar adult acoustic vectors, each corresponding to an infant acoustic vector.

We assume two distinct articulatory systems A and I that output signals. The system A represents an adult female articulatory system, and I an infant articulatory system. Our data set is a collection of vectors of acoustic information derived from vocalic signals s output by A and I as follows:

- Given a vocalic signal s, we recover formant values F_1, F_2, F_3, and F_4 (in Barks) from s at a single point in time.
- We denote the formant values as f_1, f_2, f_3, f_4 (usually omitting the superscript), and use them to form a vector (f_1, f_2, f_3, f_4). The vectors derived from vocalic signals are called acoustic vectors. The adult vowel space V_A is the collection of acoustic vectors derived from A. Similarly, the infant vowel space V_I is the collection of acoustic vectors derived from I. Both spaces are represented in Figure 1a).

We focus on acoustic vectors with four formant values (f_1, f_2, f_3, f_4), and simplified acoustic vectors with values for
only the first three formants \(\{f_1, f_2, f_3\} \). Given this data representation, we formulate the subtasks of GROUPING and MAPPING as follows:

- Group the acoustic vectors in \(V_A \) into \(v \)-many categories \(a_1, \ldots, a_v \), called adult vowel categories. Group the acoustic vectors in \(V_I \) into \(v \)-many categories \(i_1, \ldots, i_v \), called infant vowel categories.

- Map the categories \(a_1, \ldots, a_v \) to the categories \(i_1, \ldots, i_v \), preserving local geometric relationships. That is, achieve a reasonable correspondence between \(a_1, \ldots, a_v \) and \(i_1, \ldots, i_v \) (using exemplar pairs).

2. Manifolds

We briefly present the conceptual basis for the manifold learning approach we intend to use. For a detailed introduction to manifolds see [11]. Intuitively, a manifold is a subset of a higher-dimensional space that is similar to a lower-dimensional Euclidean space. For example, the surface of a sphere in three-dimensional space, though not perfectly flat, is similar to the Euclidean plane (we say that the surface is a two-dimensional manifold). This similarity yields useful lower-dimensional representations of the higher-dimensional data. For example, the approximately spherical Earth is represented using two-dimensional (planar) maps. The simplified vowel spaces \(V_I \) and \(V_A \) (Figure 1a) are situated in three-dimensional space, yet they are both similar to the two-dimensional manifold. We want to take advantage of their lower-dimensional representations, depicted in Figure 1c), for GROUPING and MAPPING.

Consider the manifold \(V_A \). Being similar to the plane means that there is a family of functions on \(V_A \), each smoothly mapping a portion of \(V_A \) to the Euclidean plane. In practice, we do not have these smooth functions immediately in hand.

1. We need a way to approximate these smooth, dimensionality-reducing functions, as well as other smooth functions defined on our manifolds,

2. We need a way to measure the smoothness of these approximations.

For details on the mathematical development of these desiderata, see [12]. We briefly recount the needed components. Denote by \(L^2(V_A) \) the set of smooth functions on \(V_A \). The laplace-beltrami operator is defined as the divergence of the gradient \((\nabla f = \text{div}(\text{grad}(f))) \) of functions \(f \in L^2(V_A) \). This operator yields both a simple approximation of smooth functions on \(V_A \), and a simple method for measuring their smoothness.

For computational purposes, \(V_A \) is discretely modeled by a weighted graph \(G \). Points in \(V_A \) are represented by the vertices of \(G \). The weight between vertices \(i \) and \(j \) represents the closeness of those points on the manifold. The laplace-beltrami operator is discretely modeled as \(L = D - W \) where:

- \(W \) is the weight matrix of \(G \),
- \(D \) is the diagonal matrix with \(D_{ii} = \sum_j W_{ij} \).

The matrix \(L \) is the called graph Laplacian of \(G \).

The graph Laplacian yields a smoothness measure as follows. Assume the vertices of \(G \) are numbered \(1, \ldots, n \), and let \(f = (f_1, \ldots, f_n) \) be a function on \(G \). Suppose \(w_{ij} \) is large (i.e., \(i \) and \(j \) are close). For \(f \) to be smooth, we want \((f_i - f_j)^2 \) to be very small. That is, we want \(w_{ij}(f_i - f_j)^2 \approx 0 \) for each \(i, j \). Define the smoothness measure of \(f \) on \(G \) as:

\[
S_C(f) = \sum_{i \neq j} w_{ij}(f_i - f_j)^2 = f L f^T
\]

A function \(f \) is smooth if \(S_C(f) \approx 0 \). The alignment algorithm we use to model MAPPING crucially depends on the smoothness measure, since it measures the preservation of local geometry on \(V_A \).

3. Algorithms

We present the manifold algorithms used in our model. We begin with a simple laplacian classifier [9] used to model GROUPING. We present the algorithm for a general vowel space \(V \subseteq \mathbb{R}^n \) with vowel categories \(z_1, \ldots, z_v \). Let \(x_1, \ldots, x_k \in V \) and let the natural numbers \(1, \ldots, v \) represent the categories \(z_1, \ldots, z_v \). We assume that the categories of the first \(s < k \) points are known, and denote the category of \(x_i \) as \(b_i \) \((i \leq s)\).

The algorithm is as follows:

1. Construct a weighted graph \(G \) which has \(k \) vertices representing the points \(x_1, \ldots, x_k \). Compute the graph Laplacian \(L \) of \(G \).

2. Let \(L_1 \) be a \(s \times s \) matrix, \(L_2 \) a \(s \times (k-s) \) matrix, and \(L_3 \) a \((k-s) \times (k-s) \) matrix such that

\[
L = \begin{pmatrix} L_1 & L_2 \\ L_2^T & L_3 \end{pmatrix}
\]

3. Compute \(\bar{b} = L_1^{-1}L_2^T(b_1, \ldots, b_s)^T \). Then \(\bar{b} = (b_1, \ldots, b_{k-s}) \), and the category of \(x_{s+1} \) is \(b_j \).
The theoretical aspects of this algorithm, and comparisons to other semisupervised approaches to data classification are presented in [9]. Manifold-based classification of speech sounds is also analyzed in [8, 7].

For the Mapping task, we want to learn a transformation from \(V_A \) to \(V_I \), that preserves the similarities of their geometries. Rather than learning \(T \) directly, we learn a factorization of \(T \). We factor \(T \) into composite functions \(f \) and \(g \), with an intermediate space \(V_Z \), where \(f : V_A \rightarrow V_Z \) and \(g : V_I \rightarrow V_Z \). Conceptually, we are collapsing the manifolds \(V_A \) and \(V_I \) onto another manifold \(V_Z \) (see Figure 1c). We then learn \(T \) by learning \(f \) and \(g \).

We learn \(f \) and \(g \) using the semisupervised manifold alignment algorithm in [10]. Suppose we have a set of exemplar \(\mu \) functions. We want local geometries to be preserved; that is, we want \(\langle f_i - g_i \rangle^2 \) to be small. Moreover, we want \(\mu \) to be smooth on \(V_A \), and \(g \) to be smooth on \(V_I \). Let \(L_A \), \(L_I \), and \(L \) be the laplacian on the graphical representation of \(V_A \) and \(V_I \). We use the smoothness measure in (1) to minimize:

\[
C(f,g) =_{def} \mu \sum_{i=1}^{\ell} (f_i - g_i)^2 + fL_A f^T + gL_I g^T
\]

(3)

where \(\mu \) is a weight indicating the importance of the alignment. To properly minimize (3), we need it to be invariant under simultaneous scaling of \(f \) and \(g \). Thus, we minimize:

\[
\tilde{C}(f,g) =_{def} \frac{C(f,g)}{f^T f + g^T g}
\]

(4)

Let \(\{x_1, \ldots, x_\ell\} = V_A \subseteq \mathbb{R}^n \) and \(\{y_1, \ldots, y_\ell\} = V_I \subseteq \mathbb{R}^n \) such that \(x_i \) corresponds to \(y_i \) for \(1 \leq i \leq \ell \) and \(\ell < \min(k, q) \). The algorithm is as follows:

1. Define \(U^{\alpha \beta} \) as an \(\alpha \times \beta \) matrix such that

\[
U^{\alpha \beta} = \begin{cases}
\mu & \text{if } i = j \
0 & \text{otherwise.}
\end{cases}
\]

(5)

2. Compute the laplacians \(L_A \) and \(L_I \), and let

\[
L_Z = \begin{pmatrix}
L_A + U_{kk} & -U_{kq} \\
-U_{qk} & L_I + U_{qq}
\end{pmatrix}
\]

(6)

3. Compute the eigenvectors \(h \) of \(L_Z \), where \(h = \{f^T g^T\} \), which is equivalent to minimizing (4).

4. Let \(h_1, \ldots, h_r \) be the eigenvectors corresponding to the \(r \) smallest non-zero eigenvalues of \(L_Z \). We have the following factorization:

\[
x_i \in V_A \mapsto \{f_1(i), \ldots, f_r(i)\} \\
y_i \in V_I \mapsto \{g_1(i), \ldots, g_r(i)\}
\]

The number of eigenvectors used \((r) \) depends on the precision desired in approximating \(f \) and \(g \) (and thus \(T \)).

4. Data and model

Our model requires representation of acoustic productions of both an infant and an adult woman. We use data corresponding to the following two subcomponents of the Variable Linear Articulatory Model (VLAM, [13]): (1) the formant frequencies yielded by simulation of a six-month-old male vocal tract, and (2) the formant frequencies yielded by the simulation of a 16-year-old male vocal tract, which corresponds to the range of vowels that an adult woman might produce. Each data set contains approximately 4000 acoustic data points which are vectors whose components are the first four formant frequencies (F1, F2, F3, F4). We convert all of the formant values into the Bark scale to approximate their psychoacoustic value.

The exemplar data we use for semisupervised learning were perceptually categorized [14]. The stimuli were 408 synthesized vowels. These represented 38 tokens generated by the VLAM model for each of seven different vocal tract growth stages. These included the six-month-old and 16-year-old vocal tracts which yielded the data sets described above. The 38 tokens were meant to represent 38 commonly occurring acoustic prototypes, as determined by previous cross-linguistic surveys. Each of these was fit to an appropriate location in the maximal vowel space for each vocal-tract stage.

21 Greek listeners, 20 Korean listeners, and 21 English-speaking listeners were tested by a same-language-speaking research assistant, with all instructions translated to the native language. Stimuli were blocked by vocal-tract age. Presentation was randomized within blocks, and block order was randomized. On each trial, the listener heard a vowel, then clicked on a vowel category label on a computer screen to indicate the chosen vowel type. The number of labels reflected the number of monophthongal vowels in the language (i.e., 5 for Greek, 7 for Korean, and 12 for English). The labels were then replaced by a line visual analog scale, on which the listener clicked to record the “goodness” or confidence in the identification. A data point received a consensus label (reflecting the “community norm”) if inter-listener agreement on that label was above chance on a binomial test and there were no ties for the top-ranked choice.

We take the adult VLAM data to be \(V_A \), and the infant VLAM data to be \(V_I \). Let \(V_X = \{x_1, \ldots, x_{38}\} \) and \(V_Y = \{y_1, \ldots, y_{38}\} \) be the set of perceptually categorized adult and infant exemplar vectors. Let \(a_i^A \) be the category of \(x_i^A \), and let \(i_j^I \) be the category of \(y_j^I \).

1. For each \(x_i^A \), compute its \(n \) nearest neighbors in \(V_A \) and assign them category \(a_i^A \). Call the derived set of categorized adult acoustic vectors \(A_{cat} \). Carry this process out for each \(y_j^I \), and call the derived set of categorized infant acoustic vectors \(I_{cat} \).

2. Run the laplacian classifier (GROUPING) on \(V_A \) using \(A_{cat} \) as training data. Similarly, run GROUPING on \(V_I \) using \(I_{cat} \) as training data.

3. For each adult vowel category \(a_i \), let \(A_{cat}^{a_i} \) be the set of adult acoustic vectors in \(A_{cat} \) with category \(a_i \). Compute the mean of each \(A_{cat}^{a_i} \), and compute the \(m \) nearest neighbors of this mean. Call this set of nearest neighbors \(A_{align}^{a_i} \). In similar fashion, compute each \(I_{align}^{a_i} \). Let

\[
A_{align} = \begin{pmatrix}
A_{align}^{a_1} \\
\vdots \\
A_{align}^{a_n}
\end{pmatrix}, \quad I_{align} = \begin{pmatrix}
I_{align}^{a_1} \\
\vdots \\
I_{align}^{a_n}
\end{pmatrix}
\]

(7)
4. Run the semisupervised alignment algorithm (MAP-
PING) on V_A and V_f, using A_{align} and I_{align} for align-
ment training.

5. Results and discussion

The perceptual data yields three sets of categorized exemplar
data, allowing us three sets of experiments. The model algo-

rithm was run using the Greek, Korean, and English perceptual
data, in turn, as V_A and V_f. The Greek perceptual categoriza-
tion yielded five adult and infant vowel categories. The Korean
perceptual categorization yielded seven adult vowel categories,
and five infant vowel categories. In some cases, a category
had only one representative point. We excluded such points,
resulting in a simplified categorization, with four adult and in-
fant vowel categories. The English perceptual categorization
yielded ten adult vowel categories, and seven infant vowel cat-
egories. Again, in some cases a category had only one represen-
tative point. We excluded such points, resulting in a simplified
categorization, with four adult and infant vowel categories (di-
viding the vowel spaces in a different way from the four cate-
gories of the simplified Korean grouping).

We performed the experiments in two phases, one using
acoustic vectors with three formant components (f_1, f_2, f_3),
the other using acoustic vectors with four formant components
(f_1, f_2, f_3, f_4). In both cases, training parameters were as fol-

lows: we computed the five nearest neighbors of each vector in
Step 1, and 100 nearest neighbors in Step 3. In testing, we use
‘leave-one-out’ cross-validation on V_A (the perceptually cate-
grORIZED adult data) for each language. Both GROUPING and
MAPPING were tested on the held-out vector. For GROUPING,
we simply compared the known category of the held-out vector
against the category assigned by the laplacian classifier. Cor-
rectness is defined as having the same category. Correctness re-
sults for GROUPING on vectors with three (four) formant values
were – Greek: 75% (75%); Korean: 88% (85%); English: 93%
(90%). These accuracy rates are likely to be a coarser represen-
tation of the infant’s sensory map than we are trying to model
with the two manifolds. We might achieve better GROUPING if
we used individual results from the perception experiment in-
stead of consensus results and referred to the goodness ratings.
We might also need a more densely sampled set of perceptual
responses. The accuracies nevertheless seem high enough to
attempt an initial test of MAPPING.

Table 1: Mapping Results. Values indicate percent of correctly
mapped test cases.

<table>
<thead>
<tr>
<th>Eigenvectors</th>
<th>Greek</th>
<th>Korean</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>54</td>
<td>51</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>51</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>67</td>
<td>58</td>
</tr>
<tr>
<td>Num. of Formants</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

For MAPPING, we use the manifold V_Z (the space in which
V_A and V_f are aligned), and the functions $f : V_A \rightarrow V_Z$ and
g : $V_f \rightarrow V_Z$ learned by the alignment algorithm. We use f to
map the held-out vector to a point z on V_Z. We then computed
the 15 nearest neighbors of z in V_Z, mapped these back to V_f
using the inverse of g, recovered their categories assigned by
the laplacian classifier, selected the mode category, and com-
pared it to that of the held-out point. Correctness is defined as
for GROUPING. Correctness results for MAPPING are shown in

Table 1. The number r of smallest non-constant eigenvectors
used in the alignment algorithm determines the precision of the
approximations f and g.

Using $r > 4$ did not improve performance. The coarseness of
GROUPING likely precludes improved performance of fine-
grained approximations of MAPPING. Although these accuracy
rates are considerably lower than what we might expect from
adult perception of vowels in isolation (e.g. [15]), they are a
promising start. Using more eigenvectors would almost surely
result in greater accuracy but requires a more densely sampled
perceptual space. We are currently obtaining more perceptually
categorized data.

6. Acknowledgments

We are thankful for the contributions of Ilana Heintz and Patrick
Reidy. This work was funded by NSF grant BCS-0739206.

7. References

tor coupling in the development of speech,” Brain and Language,

uating parameters for mapping adult vowels to imitative babbling,”

[3] D. Hindle, “Approaches to vowel normalization in the study of
natural speech,” in Linguistic Variation: Models and Methods,

normalization procedures for language variation research,” Jour-
nal of the Acoustical Society of America, vol. 116, pp. 3099–3107,
2004.

gence of social identity and phonology,” Journal of Phonetics,

[6] A. Jansen and P. Niyogi, “Intrinsic fourier analysis on the mani-
fold of speech sounds,” in in IEEE Proceedings of International
Conference on Acoustics, Speech, and Signal Processing, 2006,
pp. 241–244.

[7] ——, “Semi-supervised learning of speech sounds,” in Proceed-

for speech analysis,” in Proceedings of The International Confer-
ence on Spoken Language Processing, 2006, pp. 2506–2509.

supervised Learning on Large Graphs, ser. Lecture Notes in Com-

ment of manifolds,” in Proceedings of the Annual Conference on
Uncertainty in Artificial Intelligence, Z. Ghahramani and R. Cowell,

nian manifolds.” Machine Learning, vol. 56, no. 1-3, pp. 209–239,
2004.

tion of French vowels synthesized by an articulatory model simu-
lating growth from birth to adulthood,” Journal of the Acousti-

[14] B. Musson, L. Méndez, M. E. Beckman, J. Edwards, and
H. Chung, “Sensorimotor maps and vowel development in en-
glish, greek, and korean: A cross-linguistic perceptual categoriza-

spectral change in vowel identification,” Journal of the Acousti-