Stylization and Trajectory Modelling of Short and Long Term Speech Prosody Variations

Nicolas Obin1,2, Anne Lacheret2, Xavier Rodet1

1 Sound Analysis and Synthesis, IRCAM, Paris, France
2 Modyco Lab., University of Paris Ouest - La Défense, Nanterre, France

nobin@ircam.fr

Abstract

In this paper, a unified trajectory model based on the stylization and the modelling of f_0 variations simultaneously over various temporal domains is proposed1. The syllable is used as the minimal temporal domain for the description of speech prosody, and short-term and long-term f_0 variations are stylized and modelled simultaneously over various temporal domains. During the training, a context-dependent model is estimated according to the joint stylized f_0 contours over the syllable and a set of long-term temporal domains. During the synthesis, f_0 variations are determined using the long-term variations as trajectory constraints. In a subjective evaluation in speech synthesis, the stylization and trajectory modelling of short and long term speech prosody variations is shown to consistently model speech prosody and to outperform the conventional short-term modelling.

Index Terms: speech prosody, stylization, trajectory model, speech synthesis.

1. Introduction

In parallel to the development of high-quality speech synthesis systems [1], the modelling of speech prosody has raised as a major concern to improve the naturalness, the liveliness, and the variety of the synthetic speech. Speech prosody is generally described as the co-occurrence of acoustic gestures occurring simultaneously over different temporal domains [2, 3] and associated to different communicative functions (linguistic, expressive). A high-quality modelling of speech prosody is desirable for natural and expressive speech synthesis and adequate modelling of speaking style, and a prerequisite in real multi-media applications (e.g., avatars, story telling, dialogue systems, numeric arts).

A variety of methods has been proposed to model speech prosody variations (f_0 [4], temporal structure [5]), and local and global variations [6, 7]. However, conventional methods usually models short-term variations of speech prosody (\textit{frame-based}, or \textit{instantaneous variations}), while long-term variations of speech prosody are not explicitly considered. Recent studies have been proposed to integrate long-term variations into HMM modelling, either for the modelling of f_0 variations [8, 9], or with extension to state-duration modelling [10]. However, the proposed methods remain a \textit{mixed model}, i.e. the conventional model is used to model the \textit{instantaneous} variations of f_0, while stylization of long-term variations are used as trajectory constraints only. In particular, the \textit{instantaneous} variations remain the minimal and target temporal domain for the modelling of speech prosody.

In this paper, a \textit{unified} trajectory model based on the stylization and the joint modelling of f_0 variations over various temporal domains is proposed. In the proposed approach, the syllable is used as the minimal temporal domain for the description of speech prosody, and f_0 variations are stylized and modelled simultaneously over various temporal domains which cover short-term and long-term variations. During the training, a context-dependent model is estimated according to the joint stylized f_0 contours over the syllable and a set of long-term temporal domains. During the synthesis, f_0 variations are determined using the long-term variations as trajectory constraints.

2. Stylization of Speech Prosody

The Discrete Cosine Transform (DCT) is used to stylize the f_0 variations over various temporal domains [11] (figure 2). The

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Schematic comparison of \textit{frame-based} and \textit{syllable-based} modelling of f_0 variations.}
\end{figure}
3. Trajectory Model

The Trajectory Model has been introduced in HMM-based speech synthesis to explicitly model the dynamic (local variations) of the speech parameters [6]. In this study, syllable is assumed as the minimal temporal domain for the description of speech prosody, and f_0 variations are stylized and modelled simultaneously over different temporal domains: short-term variations correspond to the stylization of f_0 contours over the syllable, and long-term variations correspond to the stylization of f_0 contours over long-term temporal domains. During the training, a context-dependent HMM is estimated from the joint short-term and long-term variations. During the synthesis, the short-term variations are determined so as to maximize the conditional probability of the short-term variations under the constraint of the long-term trajectories.

3.1. Parameters Estimation

Let $\mathbf{q} = [q_1, \ldots, q_N]$ be the sequence of linguistic contexts, where $q_n = [q_n(1), \ldots, q_n(L)]^\top$ is a (Lx1) linguistic vector which describes the linguistic characteristics associated with the n-th syllable. Let $\mathbf{c} = [c_1, \ldots, c_N]$ be the static observation sequence of stylized f_0 contours over the syllable-level unit, where $c_n = [c_n(1), \ldots, c_n(D)]^\top$ is a (Dx1) observation vector which describes the short-term f_0 characteristics associated with the n-th syllable.

Let $\Delta^{(k)} \mathbf{c} = [\Delta^{(k)} c_1, \ldots, \Delta^{(k)} c_N]$ be the dynamic observation sequence of stylized f_0 contours over the k-th long-term temporal domain, where $\Delta^{(k)} c_n = [\Delta^{(k)} c_n(1), \ldots, \Delta^{(k)} c_n(D)]^\top$ is a (Dx1) observation vector which describes the long-term f_0 characteristics associated with the n-th syllable.

Let $\Delta^{(k)} \mathbf{o} = [\Delta^{(1)} c_1, \ldots, \Delta^{(k)} c_N]$ be the augmented observation sequence, where $\Delta^{(k)} \mathbf{o} = [c_n^\top, \Delta^{(1)} c_n^\top, \ldots, \Delta^{(k)} c_n^\top]^{\top}$ is a (Kx1) observation vector which describes the short-term and long term f_0 characteristics associated with the n-th syllable, and K the total number of long-term temporal domains being modelled.

A HMM λ_q is estimated for each of the linguistic contexts. Each of the context-dependent HMMs is assumed to be a single-state HMM with single normal distribution and diagonal covariance matrix. Then, a context-dependent HMM λ is derived based on Maximum-Likelihood Minimum-Description-Length (ML-MDL). The long-term variations are used as additional trajectory constraints to refine the clustering of the models. A conventional context-dependent HMM is used to model syllable durations.

3.2. Parameters Inference

The determination of the sequence of f_0 parameters is similar to that of the Trajectory Model with the exception that the frame-based static observation is reformulated into the stylized f_0 contour over the syllable, and the frame-based dynamic observation (partial derivative) is reformulated into the stylized long-term f_0 contours. The sequence of syllable durations is determined with the conventional static method as the sequence of mean durations.
The optimal static observation sequence o is determined so as to maximize the log-likelihood of the short-term observation sequence o, under the constraint of the long-term trajectories $\Delta^{(k)}_o$. The optimal observation sequence $\hat{o} = [\hat{o}_1^T, ..., \hat{o}_T^T]$ is determined so as to maximize the conditional probability of the observation sequence o given the model λ.

$$\hat{o} = \arg\max_o p(o|q, \lambda) p(q|\lambda)$$

(2)

The determination of the optimal observation sequence \hat{o} divides into the following sub-problems:

$$\hat{q} = \arg\max_q p(q|\lambda)$$

(3)

$$\hat{o} = \arg\max_o p(o|\hat{q}, \lambda)$$

(4)

Assuming that each syllable is modelled by a single-state HMM, the optimal state sequence simply corresponds to the concatenated sequence of context-dependent models associated with each syllable of the syllable sequence:

$$\hat{q} = [q_1, ..., q_N]$$

(5)

where N denotes the total number of syllables in the syllable sequence.

The maximization of $p(o|\hat{q}, \lambda)$ with respect to \hat{q} is equivalent to the maximization of $p(c|\hat{q}, \lambda)$ with respect to c under the dynamic constraints $\Delta^{(k)}_c$:

$$\hat{o} = \arg\max_o p(o|\hat{q}, \lambda) \iff \hat{c} = \arg\max_c p(F(c)|\hat{q}, \lambda)$$

(6)

under the constraint:

$$o = F(c) = [c^T, \Delta^{(1)}_c^T, ..., \Delta^{(K)}_c^T]^T$$

(7)

A local solution to this problem is determined recursively using a quasi-Newton method. Finally, global variance is used to model global dynamics [7].

4. Evaluation

4.1. Stimuli

The proposed trajectory model was evaluated and compared to the conventional HMM-based model in a subjective evaluation in speech synthesis. Four models were compared: 1) the conventional HMM-based model (HTS), and trajectory models using different long-term temporal domains: 2) syllable + 1-order syllable-context (1ORDER), 3) syllable + minor prosodic group (AG), and 4) syllable + major prosodic group (PG). Evaluation was conducted using the HTS-based speech synthesis system [1]. Models were trained on 5 hours (1888 utterances) of a French single-speaker story-telling speech database using conventional linguistic contexts. 8 sentences randomly extracted from the fairy-tale “Le Petit Poucet” (“Little Tom Thumb”) were used for the comparison. For each of the trajectory models, the inferred sequence of stylized f_0 parameters was converted into a sequence of f_0 variations with respect to the inferred syllable durations and the voice/unvoiced sequence as inferred from the conventional HMM-based f_0 model. Finally, speech utterances were synthesized by the speech synthesizer. Each sentence was synthesized with the different models.

4.2. Procedure

20 native French speakers (including 13 expert and 7 naïe listeners) participated in the evaluation. The experiment consisted in a subjective comparison of the different speech prosody models. A comparison category rating test was used to compare the naturalness of the synthesized speech utterances. The evaluation was conducted according to a crowd-sourcing technique using social networks. Pairs of synthesized speech utterances were randomly presented to the participants. They were asked to attribute a preference score according to the naturalness of the speech utterances being compared on the comparison mean opinion score (CMOS) scale.

5. Results

Overall CMOS and preference score (PS) are presented in figure 3. The 1-order trajectory model significantly outperforms all of the other prosodic models whatever is the preference measure. In particular, the 1-order trajectory model is overall significantly preferred to the other prosodic models (CMOS=+0.53, PS=30%), and is individually significantly preferred to each of the other prosodic models (CMOS=+0.54, +0.51, +0.54 and PS=52.1%, 56.3%, 55.1% compared with HTS, AG, and PG models respectively). The AG trajectory model is preferred to the HTS model but not significantly (overall: CMOS=+0.18, PS=22%; pair: CMOS=+0.15, PS=46%); and significantly preferred to the PG trajectory model. Finally, the HTS model is preferred to the PG trajectory model, but not significantly (overall: CMOS=+0.34, PS=18%; pair: CMOS=+0.10, PS=28.7%). In particular, trajectory models decrease in preference when increasing the temporal domain of the trajectory constraint (CMOS$_{1\text{-order}}$=+0.53, PS$_{1\text{-order}}$=30%; CMOS$_{AG}$=+0.18, PS$_{AG}$=22%; CMOS$_{PG}$=+0.38, PS$_{PG}$=17%).
A comparison of the preference scores depending on the expertise of the participant reveals a significant difference in the perception of speech prosody between naïve and expert listeners: naïve listeners have clearly marked preferences, but with more variability, while expert listeners have less marked preferences, but with less variability (table 1).

<table>
<thead>
<tr>
<th>CMOS</th>
<th>naïve</th>
<th>expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>score</td>
<td>rank</td>
<td>score</td>
</tr>
<tr>
<td>HTS</td>
<td>-0.77 (± 0.44)</td>
<td>4</td>
</tr>
<tr>
<td>1-order</td>
<td>+0.88 (± 0.43)</td>
<td>1</td>
</tr>
<tr>
<td>AG</td>
<td>-0.10 (± 0.50)</td>
<td>2</td>
</tr>
<tr>
<td>PG</td>
<td>-0.20 (± 0.44)</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1: CMOS depending on the expertise of the participant. Mean score and 95% confidence interval.

6. Discussion

A study case of synthesized f0 variations with respect to the speech prosody model provided in figure 4 with prior state duration alignment. Speech prosody differences mostly concern f0 variations, and no significant differences between state-based and syllable-based modelling.

The 1-order trajectory model clearly succeeds to model 0 variations with respect to the conventional model, and to the other trajectory models. Each of the trajectory models succeeds in modelling f0 contours that are consistent with the considered temporal domains. However, the ability of the trajectory model to account for long-term variations decreases when the temporal domain increases, due to the increase in complexity of the optimization process. In further studies, the relationship between static and dynamic trajectories will be explicitly formulated, and different combinations of trajectory constraints will be evaluated. Finally, the formulation of the trajectory model will be extend to the modelling of the local speech rate variations.

7. Conclusion

In this paper, a trajectory model based on the stylization and the joint modelling of f0 variations over various temporal domains was proposed. In the proposed approach, f0 variations are stylized with a Discrete Cosine Transform, and modelled simultaneously over various temporal domains which cover short-term and long-term variations. During the training, a context-dependent model is estimated according to the joint stylized f0 contours over the syllable and a set of long-term temporal domains. During the synthesis, f0 variations are inferred using the long-term variations as trajectory constraints. The evaluation consisted in a subjective comparison of different speech prosody models in speech synthesis.

The 1-order trajectory model was proved to be significantly preferred to the conventional model, and to the other trajectory models. Each of the trajectory models succeeds in modelling f0 contours that are consistent with the considered temporal domains. However, the ability of the trajectory model to account for long-term variations decreases when the temporal domain increases, due to the increase in complexity of the optimization process. In further studies, the relationship between static and dynamic trajectories will be explicitly formulated, and different combinations of trajectory constraints will be evaluated. Finally, the formulation of the trajectory model will be extend to the modelling of the local speech rate variations.

8. References