A Targets-based Superpositional Model of Fundamental Frequency Contours Applied to HMM-based Speech Synthesis

Jinfu Ni, Yoshinori Shiga, Chiori Hori, and Yutaka Kidawara

Spoken Language Communication Laboratory, Universal Communication Research Institute, National Institute of Information and Communications Technology, Kyoto, Japan
{jinfu.ni, yoshinori.shiga, chiori.hori, kidawara}@nict.go.jp

Abstract
Superpositional model of fundamental frequency (F_0) contours as suggested by the Fujisaki model can well represent F_0 movements of speech keeping a clear relation with linguistic information of utterances. Therefore, improvement of HMM-based speech synthesis is expected by using the merit of superpositional model. In this paper, a targets-based superpositional model is proposed in the light of the Fujisaki model. Here, both accent and phrase components are parameterized by respectively defined low and high targets which allow flexible interaction between accent and phrase components. Due to the flexible interaction, the new method consistently treats such complex F_0 movements as low digging, varying declination, and final lowering by simply adjusting parameter values. This facilitates extraction of the model parameters from observed F_0 contours, which is one of major problems preventing the use of the Fujisaki model. Extraction of the target parameters is evaluated for a Japanese speech corpus and the F_0 contours generated by the model are used for HMM training instead of the original. Listening test of synthetic speech indicates significant improvements in speech quality. Micro-prosodic effects are also investigated. Results show that adding the micro-prosody to the generated F_0 contours does not significantly improve speech quality.

Index Terms: Prosody modeling, Superpositional F_0 model, Continuous F_0 modeling, HMM-based speech synthesis

1. Introduction
Modeling of fundamental frequency (F_0) for HMM-based speech synthesis is critical for achieving good naturalness and communicative functions. F_0 contours observed from a speech corpus usually are discontinuous. The multi-space probability distribution (MSD) HMM [1] is widely used to model the discontinuous F_0 observation. Recent research [2] indicates that continuous F_0 HMM leads to better F_0 trajectory than MSD-HMM which produces over-smoothed F_0 contours in a frame-by-frame manner. To solve the issue of over-micro F_0 modeling, several different methods have been proposed to capture the F_0 movements related to different prosodic layers [3][4][5]. An explicit formulation of different prosodic layers is the Fujisaki model [6]. The model represents a sentence F_0 contour in logarithmic scale as superposition of accent components on phrase components. These components are known to have clear correspondences with linguistic and para-linguistic information that is conveyed by prosody [7]. One of major problems preventing the use of the model, for example, in HMM-based speech synthesis is that the performance of automatic extraction of the model parameters from observed F_0 contours of a speech corpus is still rather limited [7][8][9].

Figure 1: Schematic diagram of decomposing F_0 contours into accent and phrase components represented by target points.

It is more straightforward to capture prosodic contributions of linguistic information to F_0 contours of utterances by a series of target points [10][11]. The target points are relatively easy to be detected from observed F_0 contours [11], and the transitions between target points can be well represented by Poisson process-based interpolation [12]. Towards automatic fitting of F_0 contours of a speech corpus for HMM-based speech synthesis, this paper proposes a target-based method to formulate both accent and phrase components with the Poisson process-based interpolation in the light of the Fujisaki model.

The rest of the paper is organized as follows. Section 2 describes the proposed method. Section 3 outlines an algorithm for extraction of the model parameters with experiment results in section 4. Section 5 presents the use of F_0 contours generated by the proposed model for HMM training in HMM-based speech synthesis, followed by a discussion on representing F_0 contours in HMMs in section 6. Section 7 concludes this paper.

2. Modeling of F_0 contours using two-level control mechanisms
Following the Fujisaki model [6], we decompose F_0 contours into accent and phrase components but represent them by using respective low and high targets (Fig. 1). Basically, each of accent and phrase components is defined by three (or four) targets and the two high targets, if necessary, for each component are assumed to be identical in magnitude. The motivation of using targets is to deal with non-linear interactions between accent and phrase components by relatively defining accent and phrase targets. To deal with non-linear interactions between accent and phrase components, the two components have to be...
further treated at a higher level. Therefore, we model F_0 contours by two-level mechanisms. At the first level, a Poisson process-based mechanism [12] is used to generate both accent and phrase components. At the second level, a resonance-based mechanism [13] coherently unifies them to form F_0 contours.

2.1. A resonance-based F_0 decomposition

F_0 results from vocal-cord vibrations. It is effective to use a resonance mechanism to manipulate F_0 contours [14]. Here, a resonance-based mapping [13] is applied to deal with latent interactions between accent and phrase components, which are particularly treated as a kind of topology deformations.

The resonance-based mapping between λ (frequency ratio square) and α (angle related to damping ratio) [13], hereafter referred to as $\lambda = f(\alpha)$, is determined according to Eq. (1).

$$\lambda = A(\frac{\lambda}{\alpha}) - 1, \quad 0 \leq \lambda < 1,$$

where $A(\frac{\lambda}{\alpha}) = \frac{1}{\sqrt{1 + \lambda^2 \cos^2 2\alpha - 2 \lambda \cos^2 2\alpha}}$ (2) which indicates a resonance transformation [13]. For convenience, let $\alpha = f^{-1}(\lambda)$ be the inverse mapping. When λ runs from 0 to 1, α takes values from $\frac{\pi}{4}$ to 0 in falling order.

Let f_0 be any F_0 in a voice range specified by bottom frequency f_{0b} and top frequency f_{0t}. With normalizing f_0 to [0, 1]

$$\lambda_{f_0} := \frac{\ln f_0 - \ln f_{0b}}{\ln f_{0t} - \ln f_{0b}},$$

a topological deformation between cubic and spherical objects as described in [13] is applied to f_0. More specifically,

- Define a cubic object with volume $\sqrt{0.5\lambda f_{0t}^3}$.
- Map the cubic volumes to α, $\alpha_{f_0} := f^{-1}(\sqrt{0.5\lambda f_{0t}^3})$.
- Map a reference F_0, $f_{0r} \in [f_{0b}, f_{0t}]$, to α similarly.
- $\alpha_{f_0} := f^{-1}(\sqrt{0.5\lambda f_{0t}^3})$.
- Calculate $\alpha_{f_0} - \alpha_{f_0}$, mirror symmetry with respect to α_{f_0}, thus $\alpha_{f_0} - \alpha_{f_0}$, having rising order.
- Define a spherical object having volume

$$\phi_{f_0:f_0} = \frac{4\pi}{3} \times (\alpha_{f_0} - \alpha_{f_0}).$$

Equation (4) indicates a decomposition of $\ln f_0$ over time. More particularly, $\phi_{f_0:f_0}$ is used to represent phrase components (treated as a baseline) and ϕ_{f_0,f_0} accent components. On the other hand, when giving accent components by ϕ_{f_0,f_0}, and phrase components by ϕ_{f_0,f_0}, in f_0 can be calculated by

$$\ln f_0 = \ln f_{0b} + 2f^2(\alpha_{f_0} - \alpha_{f_0})(\ln f_{0t} - \ln f_{0b}).$$

Accordingly, the resonance-based mechanism can be utilized to deal with non-linear interactions between accent and phrase components while unifying them to give F_0 contours.

2.2. A resonance-based superpositional F_0 model

A model of F_0 contours as a function of time t, $F_0(t)$, in logarithmic scale is represented as resonance-based superposition of accent component $C_p(t)$ on phrase component $C_{\alpha}(t)$.

$$\ln F_{0}(t) = \ln f_{0b} + 2f^2(\alpha(t))(\ln f_{0t} - \ln f_{0b}),$$

$$\alpha(t) = f^{-1}\left(\frac{C_p(t) - \ln f_{0b}}{2(\ln f_{0t} - \ln f_{0b})}\right) - \frac{C_{\alpha}(t) - 0.5}{10 \times 4\pi/3}.$$
smoothed F_0 contours. (b) Calculate accent components by using Eq. (4) with both the smoothed F_0 contours and the current phrase components and then estimate accent targets from the current accent components. (c) Adjust γ_{ai} into $[0.9, 1.1]$ for all the high accent targets and $[0.4, 0.6]$ for all the low accent targets and re-calculate the accent components using the adjusted accent targets. (d) Re-estimate phrase targets taking into account the current accent components. (e) Go to (b) with pre-defined times (eg., 3). (f) Insert a high phrase target if absolute errors between the generated and smoothed F_0 contours decrease over a pre-defined threshold, and go to (b).

- Parameter optimization: The accent targets are optimized by minimizing the mismatch errors between the generated and observed F_0 contours, given the estimated phrase components.

4. Experimental evaluation

Experiments of extracting model parameters are conducted for 503 utterances (ATR503set) of a female narrator. The F_0 contours are extracted with 5 ms frame shift by using the get f_0 module in the Snack Sound Toolkit [15]. f_{o1} and f_{o2} are set to 120 Hz and 420 Hz, respectively. The accent and phrase targets for fitting the F_0 contours are automatically estimated by using the algorithm mentioned above. In the process of parameter estimation, the phonetic boundary information of accentual phrases is given and at most two high accent targets are assumed within an accentual phrase. To investigate the general figures of accent and phrase targets, the automatically estimated phrase targets are manually checked with a graphic user interface. The accent and phrase targets, the automatically estimated phrase components (the thin curves) are assumed and the corresponding accent components are superimposed on the bottom.

Figure 2 shows examples of using the targets to flexibly treat interactions between accent and phrase components. As illustrated in this example, the model has a merit of using two-level decomposition (accent and phrase components) to implement three levels of phrases: accentual phrase, intermediate phrase, and intonational phrase [16]. An intermediate phrase boundary is achieved by making some low accent targets to drop under the reference zero line ($C_a(t) = 0.5$). Also, the phenomenon of final lowering [17] can be handled in the same way, adjusting the last low accent target downward as shown in Fig. 2. Using the Fujisaki model, however, additional phrase commands must be used for these situations, consequently leading difficulty in extracting the model parameters.

Figure 3 shows examples of fitting observed F_0 contours using the model. Two phrase components (the dashed curves) and three phrase components (the thin curves) are assumed and the corresponding accent components are superimposed on the bottom.

5. HMM-based speech synthesis

Speech synthesis experiments are conducted using the same continuous speech corpus of 503 sentences as used in section 4. HTS-2.1 [18] is used to train HMMs. Out of 503 sentences, 490 sentences are used for HMM training, the rest sentences are used for testing. Speech signals are sampled at 16 kHz sampling rate and the spectral envelopes are extracted by STRAIGHT analysis [19] with 5 ms frame shift. The feature vector consists of 40 mel-cepstral coefficients including the 0th coefficient, log F_0, and their delta and delta-delta coefficients. A five-state left-to-right model topology is used.

Four versions of F_0 contours are prepared to train HMMs.

- F_0 contours extracted from speech waveforms (Original).
- These generated by the proposed F_0 model (Proposed).
- These combining both the Original voiced F_0’s and the Proposed at the unvoiced regions (Prop.+MP (micro-prosody)).
- These combining both the Original voiced F_0’s and spline-based interpolation for the unvoiced regions (Spl.+MP) [2].
The last three versions use continuous F_0 contours. Note that the Proposed excludes both micro-prosody and F_0 extraction errors, but the others include both of them.

The Original as usual takes MSD-HMM [1], but the others are respectively trained by adding the continuous F_0 contours (including their delta and delta-delta) as the 5th stream while training the MSD-HMM; the 5th stream weight is set to 0. Consequently, continuous F_0 HMMs result for the last three versions. At the phase of speech synthesis, continuous F_0 contours are first synthesized by the continuous F_0 HMMs and then voiced/unvoiced decision is then taken from the MSD-HMM.

Figure 4 compares F_0 contours generated by the Original HMM and the proposed method. Compared to the Original, the F_0 contours by the proposed method are smooth and the peak portions are raised, significantly improving over micro-prosody effects. Table 3 compares F_0 errors in HMM-based prediction between the Original and Proposed. Higher errors in the Proposed are due to the ignorance of micro-prosody.

To evaluate the proposed method and the micro-prosody effects, four pair-wise preference listening tests are conducted: Original vs. Proposed, Proposed vs. Prop.+MP, Proposed vs. Spl.+MP, and Prop.+MP vs. Spl.+MP. Five natives participate in a listening test of synthetic speech in naturalness. Nine sentences (open test) make up a test set for each listener. The nine wave file pairs are duplicated and the order of two versions in a pair is swapped. The final 72 (= $4 \times 9 \times 2$) wave file pairs are provided to the listeners in random order. Each listener was asked to select which is preferable or no preference.

The results are shown in Fig. 5. The proposed method outperforms the use of observed F_0 contours (Proposed vs. Original). Adding micro-prosody to the proposed method does not improve speech naturalness (Proposed vs. Prop.+MP). The proposed method also outperforms the spline-based interpolation of observed F_0 contours for continuous F_0 HMMs [2] (Proposed vs. Spl.+MP). The last two observations are re-confirmed by the result for Prop.+MP vs. Spl.+MP as shown in Fig. 5.

6. Discussion

The F_0 contours observed from a speech corpus usually are quasi-continuous. MSD-HMM has been widely used for modeling the quasi-continuous F_0 contours [1]. The method has a merit that F_0 of each frame can be used directly as the training data and thus is good at synchronization of both mel-cepstral and prosodic features automatically. Although the method can achieve good performance even using a rather limited size of speech, it has a rather limited ability to track long-term F_0 patterns against the effects of over micro-prosody and F_0 extraction errors on the resultant HMM. To cope with this issue, several different methods using hierarchical and/or adding structures have been proposed [3][4][5]. Compared to these methods, our method is of the merit of Fujisaki model keeping a clear relation of the underlying linguistic information, which is expected to further improve HMM-based speech synthesis. Compared to the Fujisaki model, our method allows to consistently treat such complex F_0 movements as low digging, varying long-term upward/downward movements, and final lowering by simply adjusting the targets (Fig. 2). This feature strengthens automatic extraction of the model parameters from observed F_0 contours of a speech corpus, which is one of the major problems preventing the use of the Fujisaki model [7].

F_0 contours generated by the proposed method do not cover the full F_0 movements including deviation caused by phonetic segments. A lot of research work in the literature (eg., [20]) has pointed out that micro-prosody affects speech quality. Typically, high vowels tend to have a higher F_0 than low vowels. However, our results and informal listening of re-synthesized speech excluding the component of micro-prosody indicate that having micro-prosody or not does not significantly affect synthetic speech quality. Two reasons are considered for this observation. One is the use of high-quality spectra analyzed by STRAIGHT [19]. The other is that the intrinsic F_0 differences in vowels probably are captured by the individual targets.

A few caveats in the work need to be mentioned. The number of listeners is quite limited and the experiment is only conducted with a female speaker. Also, we do not perform MOS (mean opinion score) evaluation. Further work is needed.

7. Conclusions

This paper proposed a new superpositional model of F_0 contours to strengthen automatic extraction of the model parameters from observed F_0 contours. The proposed model is of the merit of the Fujisaki model: a limited number of model parameters can well represent F_0 contours of speech keeping a clear relation of linguistic information of utterances. By using F_0 contours generated by the proposed model for HMM training instead of original F_0’s, an improvement in synthetic speech quality was achieved. The effects of micro-prosody on HMM-based speech synthesis were also investigated with the proposed model. The results show that having micro-prosody or not does not significantly affect synthetic speech quality.

Acknowledgements We would like to thank Dr. Toda and Dr. Tokuda for their valuable discussions.

Table 3: F_0 error comparison between Original and Proposed.

<table>
<thead>
<tr>
<th>Method</th>
<th>Closed (400 utterances)</th>
<th>Open (10 utterances)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>19.60 Hz (SD: 16.66)</td>
<td>21.51 Hz (SD: 17.34)</td>
</tr>
<tr>
<td>Proposed</td>
<td>21.77 Hz (SD: 18.32)</td>
<td>22.53 Hz (SD: 18.52)</td>
</tr>
</tbody>
</table>

Figure 4: Comparison of F_0 contours for a Japanese sentence generated by the Original HMM and the proposed method.

Figure 5: Comparison between four pairs of versions in a preference test on synthetic speech naturalness.

Table 3: F_0 error comparison between Original and Proposed.
8. References

[18] http://hts.sp.nitech.ac.jp/
