Auto Word Alignment Based Chinese-English EBMT

Yang Muyun, Zhao Tiejun et al

Machine Intelligence & Translation Lab
Research Center for Language Technology
School of Computer Science & Technology
Harbin Institute of Technology, China
Contents

- Background
 - Introduction to MI&T Lab
 - Recent work
- Word Alignment Based EBMT
- Experiments and Discussions
- Conclusion
Background

About MI&T LAB

- Began Chinese-English MT in 1987
- First CEMT system of the mainland in 1988
- Top CEMT in MT Evaluation 1996 Held by National 863 Project
- Joint MT Lab with MSRC in 2000
- Joint NLP&Speech Lab with MSRA in 2004
Background

- MT in the MS-HIT Joint Lab
 - Conquer Barrier between Chinese English by Bilingual Corpus Based Knowledge Acquisition (KA)
 - From covert sentence pairs to overt translation knowledge
 - Least knowledge required → Statistical MT(or TM)
 - Some knowledge required → EBMT
 - Intensive knowledge required → RBMT
Background

- MT in the MS-HIT Joint Lab
 - 2000-2001: Chinese English Bilingual Corpus
 Processing
 - Dictionary based sentence alignment;
 - Hybrid strategy for word alignment;
 - 100,000 Chinese English sentence beads;
 - Word aligned Chinese English corpus (60,000 beads)
Background

MT in the MS-HIT Joint Lab

- 2001-2002: Auto KA Based MT
 - Mono-lingual parsing based Structure Alignment (1 Coling’02 paper)
 - Auto template acquisition based ECMT
 - MT Evaluation Methods (1 Coling’02 paper)

- 2002-2003: Chinese parsing
 - Chinese treebank (30,000 with Base Phrases, Head)
 - Head-driven Model for Chinese Parsing
 - Word alignment based EBMT
Contents

- Background

- **Word Alignment Based EBMT**
 - Introduction
 - Word Alignment Based Example Extraction
 - Finding Right Examples
 - Translation Selection

- Experiments and Discussions

- Conclusion
Word Alignment Based EBMT

Introduction
- Auto construction: least manual work;
- Sub-sentential focus: phrase level example;
- Adaptability: domain, (language if possible);
- Linguistic light approach: less information loss;
Word Alignment Based EBMT

EBMT vs Segmentation (Dic？Example_base)

- **Input:** 您的登山小组有几个人？
- **Word_Seg:** 您/的/登/山/小组/有/几/个/人/？
- **Example_Seg:** 您的/登山小组/有几个人/？
- **Translation:** your/ climbing group/ how many people are there/？
- **Final:** How many people are there in your climbing group？
Word Alignment Based EBMT
Word Alignment Based EBMT

Word alignment based example extraction

- **Atomic** (aligned words): (a-A) (c-C) (e-E) (f-G) (g-I) (h-F) (i-H)

- **Parallel extension**: (ab-AB) (bc-BC) (bcd-BCD) (cd-CD) (de-DE)

- **Locked/non-parallel**: (fghi-FGHI)
Word Alignment Based EBMT

Finding right examples

- Example length: bigger context;
- Segment (concatenated examples from same sentence) length: consistency;
- Word links: better translation correspondence;
- Frequency: statistically reliable;
Word Alignment Based EBMT

Finding right examples

\[\text{Segment} = \arg \max \sum_{i=0}^{l} \delta([s_{k_{i-1}+1} \ldots s_{k_i}]^i) \]

\[\delta \left(\left[s_{k_{i-1}+1} \ldots s_{k_i} \right]^i \right) = \]

\[(\text{Length} ^ \left(\left[s_{k_{i-1}+1} \ldots s_{k_i} \right]^i \right))^w \]

\[\times \ An \times (1 - \frac{k_i - k_{i-1} + 1}{\text{Length} \left(\left[s_{k_{i-1}+1} \ldots s_{k_i} \right]^i \right)}) \]

\[\times \ \log(\sqrt{\text{Fre} \left(\left[s_{k_{i-1}+1} \ldots s_{k_i} \right]^i \right)} + 1) \]
Word Alignment Based EBMT

Translation Selection
- Evaluate the quality of translation segment with word translation probability;
- And with the number of aligned words in the segment

\[T = \arg \max_{T'} P(T' \mid S) \cdot P(An \mid m, l) \]
Contents

- Background
- Word Alignment Based EBMT
- Experiments and Discussions
 - Data settings
 - RBMT—the rival system
 - Performance and discussions
- Conclusion
Data settings

- Supplied: 20,000 beads for training;
- Un-restricted: extra 58,600 beads including dining, traffic, sports and travelling domain;
- Chinese-English dictionary: 88,378 entries, for Chinese word segmentation and default translation;
- Tested on the development corpus and the final test set;
Experiments and Discussions

- RBMT—the rival system
 - A typical Chinese-English translation system based on “analysis-transfer-generation”;
 - First implemented as “BT863” in 1995, top system in MT evaluation held by National 863 project;
 - Re-implemented in 1999-2000, with solid improvement in Chinese analysis;
 - Integrated with Head-driven Chinese parser in 2002;
 - Rule base optimization in 2003;
Experiments and Discussions

Performance: Development corpus

<table>
<thead>
<tr>
<th></th>
<th>BLEU-4</th>
<th>NIST-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplied</td>
<td>0.2082</td>
<td>5.5754</td>
</tr>
<tr>
<td>- Optimal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplied</td>
<td>0.2052</td>
<td>5.3975</td>
</tr>
<tr>
<td>- Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un-restricted</td>
<td>0.2209</td>
<td>5.5940</td>
</tr>
<tr>
<td>- Optimal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un-restricted</td>
<td>0.2236</td>
<td>5.6220</td>
</tr>
<tr>
<td>- Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBMT</td>
<td>0.1477</td>
<td>5.1990</td>
</tr>
</tbody>
</table>
Experiments and Discussions

Performance: final result

<table>
<thead>
<tr>
<th></th>
<th>Supplied</th>
<th></th>
<th>Un-restricted</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optimal</td>
<td>Baseline</td>
<td>Optimal</td>
<td>Baseline</td>
</tr>
<tr>
<td>BLEU4</td>
<td>0.2099</td>
<td>0.2113</td>
<td>0.2438</td>
<td>0.2427</td>
</tr>
<tr>
<td>NIST5</td>
<td>5.9554</td>
<td>5.927</td>
<td>6.1354</td>
<td>6.0603</td>
</tr>
<tr>
<td>GTM</td>
<td>0.6013</td>
<td>0.5988</td>
<td>0.6119</td>
<td>0.6152</td>
</tr>
<tr>
<td>WER</td>
<td>0.6169</td>
<td>0.6112</td>
<td>0.5941</td>
<td>0.5906</td>
</tr>
<tr>
<td>PER</td>
<td>0.5003</td>
<td>0.4976</td>
<td>0.4872</td>
<td>0.4820</td>
</tr>
</tbody>
</table>
Experiments and Discussions

Discussions

- Performance of word alignment tool:
 - 80% on F-measure for both general and computer domain bilingual corpus [Yajuan et al, 2001]
- Extended parallel examples are linguistically noise;
- Locked example sometimes is a whole sentence.
- No essential generation processing like: reordering and inflection
Conclusion

- A bi-direction CE EBMT:
 - Requires only a word aligned Chinese English bilingual corpus;
 - Example extraction efforts purely based on word alignment;
 - Our approach optperforms a well built RBMT system;

- A prototype, promising but need detailed polish!
Thanks!