Experimenting with Phrase-Based Statistical Translation within the IWSLT 2004 Chinese-to-English Shared Translation Task

Philippe Langlais
RALI/DIRO
University of Montreal
Canada
felipe@iro.umontreal.ca

Michael Carl
IAI
Saarbrücken
Germany
carl@iai.uni-sb.de

Oliver Streiter
NUK
National Univ. of Kaohsiung
Taiwan
ostreiter@nuk.edu.tw

IWSLT 2004, Kyoto, Japan
Motivations

• How far can we go in one month of work, starting from (almost) scratch and relying intensively on available packages?

• Interested by the perspective taken by the organizers: validation of existing evaluation methodologies. See also the CESTA project (TECHNOLANGUE):

http://www.technolangue.net/

We participated in:

• The Chinese-to-English track using only the 20K sentences provided
Plan

• Few words on the core engine
• Our phrase-based extractors
• Experiments with phrase-based models (PBMNs)
• Conclusions
The core engine

We used an off-the-shelf decoder: Pharaoh (Koehn, 2004). It requires:

- a flat PBM (*e.g.* small boats ↔ bateau de plaisance 0.82)

 details are coming soon

- we used SRILM (Stolcke, 2002) to produce a 3-gram

 ngram-count -interpolate -kndiscount1 -kndiscount2 -kndiscount3

- a set of parameters (one for the PBM, one for the language model, one for the length penalty and one for the built-in distortion model)

 details are coming soon

Pharaoh is a noisy channel phrase-based statistical engine.
Our phrase-based extractors

We tried two different methods of extraction:

WABE: relying on viterbi alignments computed from IBM model 3

We used Giza++ (Och and Ney, 2000) to get them out of an IBM model 3

SBE: One capitalizing on redundancies in the training corpus at the sentence level

- WABE = Word-Alignment Based Extractor
- SBE = String-Based Extractor
WABE: Word-alignment based extractor

Yet another version of (Koehn et al., 2003; Tillmann, 2003) and others. Basically:

- Considering the intersection of the word links obtained by viterbi alignment in both directions (C-E, E-C)
- (more or less) carefully extending this set of links with links belonging to the union of both sets (C-E,E-C)

Few meta-parameters are controlling the phrases acquired in this way:

length-ratio: ratio = 2

min-max src/tgt length: min=1, max=8

felipe@ rali

IWSLT 2004, Kyoto, Japan
SBE: String-based extractor

If two strings are in relation of translation and if part of them also are, then we can induce a specific translation relation between the other parts.

\[
res \leftarrow T = \{(E_i, C_i), i \in [1, |T|]\} \text{ (the training corpus)}
\]

repeat

for all \(\langle (E_i, C_i), (E_j, C_j) \rangle \in res\) **do**

if \(C_j = C_i \alpha\) or \(C_i = C_j \alpha\) **then**

if \(E_j = E_i \beta\) or \(E_i = E_j \beta\) **then**

\[
res \leftarrow res \cup (\beta, \alpha)
\]

until convergence of \(res\)

54,461 parameters out of 20K sentences
Experiments with PBMs: setting

| corpus | | | | | | | |
|----------|--------|----------|----------|--------|----------|----------|
| | pair | Chinese | | English| | |
| | | tokens | words | tokens | words |
| TRAIN | 20 000 | 182 904 | 7 643 | 188 935| 7 181 |
| TRAIN-A | 11 884 | 112 000 | 6 456 | 116 343| 6 008 |
| TRAIN-Q | 8 116 | 70 904 | 4 024 | 72 592 | 3 900 |
| CSTAR | 506 | 3 515 | 870 | — | — |
| TEST | 500 | 3 794 | 893 | — | — |

- the **tokenization** was the one provided, English material was **lowerized**,.
- **punctuation** marks were removed from the translations in accordance to the specifications (s/ \.///g, s/ ?///g, s/ ,//g s/ "//g, s/ \\!///g, s// /g, s/ *// /g)
- source **OOV** appearing in the translations were replaced afterward by the most likely word according to our 3g model (in a left-to-right manner). Uppercased OOV were left unmodified.
Word-based translation versus PB translation

<table>
<thead>
<tr>
<th>engine</th>
<th>NIST</th>
<th>BLEU%</th>
<th>mWER</th>
<th>mSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibm2+3g</td>
<td>5.0726</td>
<td>26.57</td>
<td>60.56</td>
<td>94.47</td>
</tr>
<tr>
<td>Pharaoh</td>
<td>5.5646</td>
<td>26.16</td>
<td>59.70</td>
<td>94.27</td>
</tr>
<tr>
<td>wbm by Pharaoh</td>
<td>4.8417</td>
<td>15.54</td>
<td>64.95</td>
<td>97.63</td>
</tr>
</tbody>
</table>

- *ibm2+3g* is an extension of the decoder described by *(Niessen et al., 1998)*

- *Pharaoh* was run with its default setting; each parameter of the FPBM was scored by relative frequency
Tuning the decoder

<table>
<thead>
<tr>
<th>λ_d</th>
<th>λ_ϕ</th>
<th>λ_w</th>
<th>λ_{lm}</th>
<th>NIST</th>
<th>BLEU%</th>
<th>MWER</th>
<th>MSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5.5646</td>
<td>26.16</td>
<td>59.70</td>
<td>94.27</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1.5</td>
<td>1</td>
<td>6.3470</td>
<td>25.63</td>
<td>58.93</td>
<td>94.27</td>
</tr>
<tr>
<td>.2</td>
<td>.9</td>
<td>-1.5</td>
<td>.8</td>
<td>6.8401</td>
<td>28.44</td>
<td>56.25</td>
<td>94.07</td>
</tr>
</tbody>
</table>

λ_d, distorsion weight ([0, 1])

λ_ϕ, transfer weight ([0, 1])

λ_w, word penalty ([-3, 3])

λ_{lm}, language model weight ([0, 1])

We applied a poor man’s strategy (sampling uniformly the parameter ranges)

→ a relative gain over the default configuration (line 1) of 23%

→ 61% of this gain obtained by tuning only the word penalty parameter
Merging different FPBM

| config | $|p|$ | NIST | BLEU\% | MWER | MSER |
|--------|-------|------|--------|------|------|
| WABE | 6.8401| 28.44| 56.25 | 94.07| |
| + WBM | 7.0766| 31.38| 54.88 | 93.28| |
| + SBE | 7.0926| 31.78| 54.56 | 92.69| |

Merging 2 models was done harshly by:

- copying $p_i(s|t), \forall s$ whenever t has not been seen in one model,
- averaging them in case both $p_1(s|t)$ and $p_2(s|t)$ exist,
- normalizing

\rightarrow a relative gain of 3.7%
The weakness of relative frequency

<table>
<thead>
<tr>
<th>min</th>
<th>max</th>
<th>(\text{model})</th>
<th>%f1</th>
<th>%f2</th>
<th>%f3+</th>
<th>(%p = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>166 481</td>
<td>90.6</td>
<td>4.9</td>
<td>4.5</td>
<td>74.6</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>153 512</td>
<td>92.7</td>
<td>4.3</td>
<td>3.0</td>
<td>78.5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>73 369</td>
<td>87.0</td>
<td>7.1</td>
<td>5.9</td>
<td>68.7</td>
</tr>
</tbody>
</table>

- \%f1, \%f2 and \%f3+ stand for the percentage of parameters (pairs of phrases) seen 1, 2 or at least 3 times in the \textsc{train} corpus.

- \(\%p = 1 \) stands for the percentage of parameters that have a relative frequency of 1.
Scoring phrases with IBM model 1

<table>
<thead>
<tr>
<th>model</th>
<th>NIST</th>
<th>BLEU%</th>
<th>MWER</th>
<th>MSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>relfreq</td>
<td>7.0926</td>
<td>31.78</td>
<td>54.56</td>
<td>92.69</td>
</tr>
<tr>
<td>ibm</td>
<td>7.3067</td>
<td>32.98</td>
<td>53.86</td>
<td>92.49</td>
</tr>
<tr>
<td>relfreq&ibm</td>
<td>7.3118</td>
<td>34.48</td>
<td>52.73</td>
<td>91.90</td>
</tr>
<tr>
<td>relfreq&pn-ibm</td>
<td>7.4219</td>
<td>34.6</td>
<td>53.02</td>
<td>91.70</td>
</tr>
</tbody>
</table>

- baseline model (line 1) = merged FPBM of 306 585 parameters trained by relative frequency.

- rating these parameters by IBM model 1 yields a relative improvement in the NIST score of 3%

- pn-ibm: do not normalize parameters where $|\{s : p(s|t) \exists\}| = 1$ holds
Specific models

<table>
<thead>
<tr>
<th>config</th>
<th>NIST</th>
<th>BLEU%</th>
<th>MWER</th>
<th>MSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>relfreq&ibm</td>
<td>7.3118</td>
<td>34.48</td>
<td>52.73</td>
<td>91.90</td>
</tr>
<tr>
<td>A</td>
<td>7.1862</td>
<td>34.21</td>
<td>53.12</td>
<td>91.18</td>
</tr>
<tr>
<td>Q</td>
<td>6.4995</td>
<td>34.92</td>
<td>52.12</td>
<td>93.00</td>
</tr>
<tr>
<td>specific-lm</td>
<td>7.4702</td>
<td>33.64</td>
<td>53.27</td>
<td>91.90</td>
</tr>
<tr>
<td>A</td>
<td>7.3229</td>
<td>33.66</td>
<td>53.08</td>
<td>90.85</td>
</tr>
<tr>
<td>Q</td>
<td>6.7010</td>
<td>33.58</td>
<td>53.55</td>
<td>93.50</td>
</tr>
</tbody>
</table>

- around 40% of the training sentences were interrogatives ones

⇒ specific language model combined to the general one (specific tuning over 6 parameters)

(we did not observe improvements by modelling specific FPBM's)
Translations we submitted before the deadline

ibm2+3g word-based translation engine,

straight a WABE FPBM

merge the best model obtained by merging word and phrase associations

QA the one submitted for manual evaluation

manual to measure the usefulness of the automatic translations for human post-editing

Task: selecting one translation among the generated ones and enhancing its quality though slight modifications

felipe@ rali

IWSLT 2004, Kyoto, Japan
The manual experiment

- 423 (84.6%) were just selections of one of the automatic translations.

- Out of these 423 translations, 85 (20%) were produced by the word-based engine ($ibm2+3g$).

<table>
<thead>
<tr>
<th>trans1</th>
<th>take a bath for a twin room .</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans2</td>
<td>please take a bath for a double .</td>
</tr>
<tr>
<td>trans3</td>
<td>take a bath of double .</td>
</tr>
<tr>
<td>trans4</td>
<td>take one twin room with bath .</td>
</tr>
<tr>
<td>trans5</td>
<td>have a bath for double .</td>
</tr>
<tr>
<td>trans6</td>
<td>have a twin room with bath , please .</td>
</tr>
<tr>
<td>trans7</td>
<td>have a double room with bath , please .</td>
</tr>
<tr>
<td>manual</td>
<td>please, a twin room with bath .</td>
</tr>
</tbody>
</table>
Translations we submitted before the deadline

<table>
<thead>
<tr>
<th>config</th>
<th>BLEU%</th>
<th>NIST</th>
<th>GTM</th>
<th>WER</th>
<th>Per</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibm2+3g</td>
<td>27.27</td>
<td>6.55</td>
<td>62.49</td>
<td>58.12</td>
<td>48.82</td>
</tr>
<tr>
<td>straight</td>
<td>30.92</td>
<td>7.52</td>
<td>66.93</td>
<td>56.05</td>
<td>47.90</td>
</tr>
<tr>
<td>merge</td>
<td>35.32</td>
<td>8.00</td>
<td>68.60</td>
<td>51.74</td>
<td>43.86</td>
</tr>
<tr>
<td>QA</td>
<td>33.89</td>
<td>7.85</td>
<td>68.55</td>
<td>53.24</td>
<td>45.14</td>
</tr>
<tr>
<td>manual</td>
<td>36.93</td>
<td>8.13</td>
<td>68.42</td>
<td>49.62</td>
<td>42.53</td>
</tr>
</tbody>
</table>

The ordering of the variants was (almost) consistent with the one observed on the Cstar corpus.
Conclusions

• Is phrase-based translation ≡ Pharaoh(Giza++$^\lambda_g \times$ SRILM$^\lambda_s$) ?
 ↦ at least a decent system can be obtained this way

• Things we tried that did not work better:
 – splitting the training sentences into shorter ones
 – replacing proper names by NAME

• Many factors to be tried:
 – word alignment procedure (Simard and Langlais, 2003)
 – other scoring functions (Zao et al., 2004)

• Not clear whether the best settings we found here would be appropriate for another translation task
References

WABE

Require: $\mathcal{P}, \mathcal{R}, minLength, maxLength, ratio$

Ensure: res contains all the pairs of phrases

1: Initialization
2: $res \leftarrow \{\}$
3: for all $x : 1 \rightarrow |S|$ do $T[x] \leftarrow \{\}$
4: for all $y : 1 \rightarrow |T|$ do $T[y] \leftarrow \{\}$
5:
6: Step 1: \mathcal{P}-projection
7: for all $(x,y) \in \mathcal{P}$ do $add(x,y)$
8:
9: Step 2: Extension
10: for $p : 1 \rightarrow 2$ do
11: repeat
12: $a \leftarrow \{\}$
13: for $s : 1 \rightarrow |S|$ do

felipe@ rali

IWSLT 2004, Kyoto, Japan
14: \textbf{for all} $t \in T[s]$ \textbf{do}
15: \hspace{1em} \textbf{if} $p = 2$ \textbf{then}
16: \hspace{2em} \text{neighbor}(x-1,y-1); \text{neighbor}(x+1,y-1);
17: \hspace{2em} \text{neighbor}(x-1,y+1); \text{neighbor}(x+1,y-1);
18: \hspace{1em} \textbf{else}
19: \hspace{2em} \text{neighbor}(x-1,y); \text{neighbor}(x+1,y);
20: \hspace{2em} \text{neighbor}(x,y-1); \text{neighbor}(x,y+1);
21: \hspace{1em} \textbf{for all} $(x, y) \in a$ \textbf{do} \text{add}(x, y)
22: \hspace{1em} \textbf{until} $|a| = 0$
23:
24: \textit{Step 3: Collect independent boxes}
25: \hspace{1em} $b \leftarrow \{\}$
26: \hspace{1em} \textbf{for} $x : 1 \rightarrow |S|$ \textbf{do}
27: \hspace{2em} $X \leftarrow \{x\}; \ Y \leftarrow \{\}$
28: \hspace{2em} \textbf{repeat}
29: \hspace{3em} $X_m \leftarrow X; \ Y_m \leftarrow Y$
for all $x \in X$ do $Y \leftarrow Y \cup T[x]$

if $Y \neq Y_m$ then

for all $y \in Y$ do $X \leftarrow X \cup T[y]$

until $X = X_m$ and $Y = Y_m$

$b \leftarrow b \cup \left\{ \left(\min\{x : x \in X\}, \max\{x : x \in X\} \right), \left(\min\{y : y \in Y\}, \max\{y : y \in Y\} \right) \right\}$

$x \leftarrow \max\{x : x \in X\} + 1$

Step 4: Combine boxes

for $i : 1 \rightarrow |b|$ do

let $((x_{m_i}, x_{M_i}), (y_{m_i}, y_{M_i})) = b_i$

add($x_{m_i}, x_{M_i}, y_{m_i}, y_{M_i}$)

for $j : i + 1 \rightarrow |b|$ do

let $((x_{m_j}, x_{M_j}), (y_{m_j}, y_{M_j})) = b_j$

if $x_{M_i} + 1 = x_{m_j}$ then

add($x_{m_i}, x_{M_j}, y_{m_i}, y_{M_j}$)