The GREYC Machine Translation System for the IWSLT 2008 campaign

Yves Lepage Adrien Lardilleux Julien Gosme Jean-Luc Manguin

GREYC, University of Caen, France
The system

- ALEPH is a pure example-based system that exploits proportional analogies (analogies of form).

Previous system: analogies between character strings:

```
you swim : he swims :: you surf :: he surfs
```

New system: can also work on words (used in IWSLT):

```
My hotel sucks : Your hotel sucks :: My hotel rocks :: Your hotel rocks
```

⇒ Nothing the character-based approach cannot deal with, but faster.
The participation of the GREYC

Tracks: all btec tasks

- Arabic to English
- Chinese to English
- Chinese to Spanish
- Chinese to Spanish by the way of English (Pivot)

Conditions: used only training data (no development set)
Non-deterministic analogy solver

Previous implementation in C:

\[x : y :: z :? \Rightarrow ? = t \]

New solver in Python:

\[x : y :: z :? \Rightarrow ? = t_1 \]
\[t_2 \]
\[t_3 \]
\[\vdots \]

Example

kalb : kulaib :: masjid : musaijidd
kalb : kulaib :: masjid : musjaiidd
kalb : kulaib :: masjid : musjiaidd
NON-DETERMINISTIC ANALOGY SOLVER

Distribution of the number of analogical equations with the same number of solutions (number of solutions in abscissae; number of analogies in ordinates):

Ratio 1 solution: multiple solutions = 30:1
Re-engineering of the engine

Main issue of the engine

Efficient discovery of translation examples that are likely to form an analogical equation is critical.

⇒ Design of a new heuristic:

• Analogical terms are chosen according to their longest common substring.

• Can be pre-computed and saved on disk to speed up searches.

Benefit: number of attempted analogical equations that have at least one solution increased from 28% to 52%.
NEW ALIGNMENT METHOD

“Perfect” alignments contain those words that strictly appear on the same lines:

- Allons boire un verre . ↔ Let ’s have a drink .
- Allons boire une bière ou deux . ↔ Let ’s have a beer or two .
- Une bière et un café . ↔ One beer and one coffee .
- Je voudrais un verre de vin , s’ il vous plaît . ↔ I ’d like a glass of wine , please .
- Je voudrais de la bière , s’ il vous plaît . ↔ I ’d like some beer , please .
- Nous prendrons un pichet de vin . ↔ We ’ll have a jug of wine .

Contexts

- Allons boire une _ ou deux . ↔ Let ’s have a _ or two .
- Une _ et un café . ↔ One _ and one coffee .
- Je voudrais de la _ , s’ il vous plaît . ↔ I ’d like some _ , please .

“Perfect”

- bière ↔ beer

Contexts

- un verre de vin _ . ↔ a glass of wine _ .
- de la bière _ . ↔ some beer _ .

(GREYC@IWSLT 2008)
NEW ALIGNMENT METHOD

How to extract the alignments for ambiguous terms?

<table>
<thead>
<tr>
<th>French</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allons boire un verre .</td>
<td>Let 's have a drink .</td>
</tr>
<tr>
<td>Allons boire une bière ou deux .</td>
<td>Let 's have a beer or two .</td>
</tr>
<tr>
<td>Une bière et un café .</td>
<td>One beer and one coffee .</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>French</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je voudrais un verre de vin , s’ il vous plaît .</td>
<td>I ’d like a glass of wine , please .</td>
</tr>
<tr>
<td>Je voudrais de la bière , s’ il vous plaît .</td>
<td>I ’d like some beer , please .</td>
</tr>
<tr>
<td>Nous prendrons un pichet de vin .</td>
<td>We ’ll have a jug of wine .</td>
</tr>
</tbody>
</table>

Make them perfect: split the corpus.

<table>
<thead>
<tr>
<th>“Perfect”</th>
<th>“Perfect”</th>
</tr>
</thead>
<tbody>
<tr>
<td>verre ↔ drink</td>
<td>verre ↔ glass</td>
</tr>
</tbody>
</table>

⇒

Contexts

<table>
<thead>
<tr>
<th>French</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allons boire un _ .</td>
<td>Let ’s have a _ .</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>French</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je voudrais un _ de vin , s’ il vous plaît .</td>
<td>I ’d like a _ of wine , please .</td>
</tr>
</tbody>
</table>

\[
P(\text{drink} | \text{verre}) = 0.5 \quad P(\text{verre} | \text{drink}) = 1 \\
P(\text{glass} | \text{verre}) = 0.5 \quad P(\text{verre} | \text{glass}) = 1
\]
NEW ALIGNMENT METHOD

Experiments on development set 3, using the first half for tuning and the second half for testing:

![Graph showing BLEU scores for ar-en, zh-en, and zh-es datasets.](chart.png)
Details of the runs

3 runs for each task:

Primary: ALEPH (EBMT), with training data inflated with alignments generated by malign [Lardillleux & Lepage, next Wednesday];

Contrast 1: Moses [Koehn et al., 2007] with translation tables generated by malign;

Contrast 2: Moses with default translation tables (refined alignments from IBM model 4, with Giza++ [Och & Ney, 2003]).
Evaluation results

Results with CRR, case+punc:

![Bar chart showing BLEU scores for ar-en, zh-en, zh-es, and zh-(en)-es languages. The chart compares Primary (EBMT), Contrast 1 (Moses + Malign), and Contrast 2 (Moses + Giza++) with different colors and patterns.]
Results synthesis

In most cases: primary < contrast1 ≤ contrast2

- If one sees the contrast2 as a kind of baseline, then our system could not even reach the baseline of SMT in its current state (recursivity not ready at the time of evaluation).
- + only training data was used... (and you?)
- There is room for improvement!