Overview

- We participated in two BTEC translation tasks: Chinese-English and Arabic-English.
- Our interests include:
 - Different preprocessing schemes for Chinese and Arabic.
 - Combination of phrase tables based on different alignments.
 - Semi-supervised reranking of N-best lists.
 - Sentence-type specific part-of-speech (POS) language modeling for rescoring.

Baseline translation system

- A state-of-the-art two-pass phrase-based SMT system.
- Trained within the Moses development and decoding framework.
- A 4-gram Language model trained using the SRILM toolkit.

Preprocessing schemes

- Chinese segmentation and markup:
 - The Stanford segmenter for re-segmenting the Chinese data.
 - Character-based segmentation for the Chinese data.
 - An in-house tool Decatur to markup dates and numbers in both the Chinese and English data.
 - A simple tool to markup just numbers in both the Chinese and English data.
 - Strip off all punctuations in both the Chinese and English data.
 - None of the above schemes led to significance improvement over the original segmentation.
- Arabic tokenization:
 - The Columbia University MADA and TOKEN tools with two schemes:
 - Split off w, f, l, b, and $Al+$.
 - TOKAN’s D2 scheme, which does not split off $Al+$ but instead separates $s+$.
 - The first scheme yielded better performance.

Phrase table combination

- Phrase tables learned from GIZA++ and MTTK alignments respectively.
- The two individual tables were combined into a single table.
- Additional binary features to indicate which alignment produced each phrase pair entry.
- The combined table outperformed the individual tables in the Chinese-English system.

Semi-supervised reranking

- f: ranking function
 $f^* = \arg\min_f \left(\sum_{P_L} e^{-2(y(x') - y(x))} + \beta \sum_{P_U} e^{-2(y(x') - y(x))} \right)$
- P_L: labeled data
 Pair-wise samples (x', y') collected from each N-best list of a held out set, such that x' ranks higher than y'.
- P_U: unlabeled data
 Pair-wise samples (x', y') collected from the N-best list of a given test sentence.
- The labeled data were produced using smoothed sentence-level BLEU scores.
- The ranking function was learned using a modified RankBoost algorithm.
 - Maximize the margins of the labeled and unlabeled data jointly.
 - Treats the reranking problem as a problem of binary classification on hypothesis pairs.
 - Iteratively train a weak ranker and adjust sample weights according to the classification results.
 - The final ranking function is a linear combination of the weak rankers from all iterations.
- Applied in the second pass for reranking N-best lists.
- For IWSLT 2007 Italian-English and Arabic-English data, it achieved substantial improvements.
- For this year data, it improved precision based evaluation metrics, such as PER, TER, WER and Precision, but degraded n-gram based metrics, such as BLEU and NIST.

Sentence-type specific POS language model

- Captures the syntactic differences between questions and statements.
- Determine the sentence type using punctuations in the source sentences.
- Applied in the second pass for reranking N-best lists.
- Led to a small improvement in the Chinese-English system.

Official evaluation results

<table>
<thead>
<tr>
<th></th>
<th>case+punc</th>
<th>no_case+no_punc</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU</td>
<td>0.41</td>
<td>0.40</td>
</tr>
<tr>
<td>PER</td>
<td>0.42</td>
<td>0.45</td>
</tr>
<tr>
<td>Meteor</td>
<td>0.66</td>
<td>0.62</td>
</tr>
<tr>
<td>NIST</td>
<td>7.05</td>
<td>7.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>case+punc</th>
<th>no_case+no_punc</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>PER</td>
<td>0.35</td>
<td>0.38</td>
</tr>
<tr>
<td>Meteor</td>
<td>0.72</td>
<td>0.69</td>
</tr>
<tr>
<td>NIST</td>
<td>6.65</td>
<td>6.93</td>
</tr>
</tbody>
</table>

Table 1: the Chinese-English system
Table 2: the Arabic-English system