Online Language Model Adaptation for Spoken Dialog Translation

Germán Sanchis-Trilles
Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, Spain

Mauro Cettolo, Nicola Bertoldi, Marcello Federico
FBK - Ricerca Scientifica e Tecnologica, Trento, Italy

Tokyo, Dec 1-2, 2009
Outline

• Introduction
• Model adaptation
• Experiments
• Future work
• Conclusions
Introduction

• Spoken language translation
• Aimed towards introducing more context in the system
• Key idea: enhance target LM by introducing parameters that are adapted to the input text
• LM is implemented as mixture of sub LMs
• Experiments on IWSLT 2009 CT task, CRR conditions
Model adaptation

- Most usual translation rule:

\[e^* = \arg \max_e \max_a \sum_{r=1}^{R} \lambda_r h_r(e, f, a) \]

- LM can be computed either as a single LM or as a mixture of LMs, i.e.:

\[p(e) = \sum_{i=1}^{M} w_i p_i(e) \]
→ Assume a partition of the parallel training data into M bilingual clusters
→ Train specific source/target LMs for each partition
→ Before translation, estimate the optimal weights of the source LMs via EM
→ Transfer the resulting weights to the target LM mixture
IWSLT Data

- Experiments carried out on the CT task (both CE and EC)
- We considered the use of Agent, Customer and Interpreter annotations
- We also considered the use of the Dialog tags

Speaker-based statistics of the CT data

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>speaker</td>
<td></td>
</tr>
<tr>
<td>agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>native</td>
<td>46.7K</td>
<td>2240</td>
</tr>
<tr>
<td>interpreter</td>
<td>26.8K</td>
<td>1626</td>
</tr>
<tr>
<td>customer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>native</td>
<td>33.3K</td>
<td>2082</td>
</tr>
<tr>
<td>interpreter</td>
<td>33.8K</td>
<td>1878</td>
</tr>
</tbody>
</table>
Nespole! data

- NEgotiating through SPOken Language in E-commerce
- Collected involving Italian speakers, translated into English

Statistics of the Nespole! dialogs.

<table>
<thead>
<tr>
<th>#turns</th>
<th>W</th>
<th>V</th>
<th>\bar{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2522</td>
<td>15335</td>
<td>1344</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Most frequent Nespole! dialog acts.

<table>
<thead>
<tr>
<th>label</th>
<th>counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>give-information</td>
<td>963</td>
</tr>
<tr>
<td>affirm</td>
<td>408</td>
</tr>
<tr>
<td>descriptive</td>
<td>285</td>
</tr>
<tr>
<td>request-information</td>
<td>199</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>total</td>
<td>2522</td>
</tr>
</tbody>
</table>
Baseline system

- Built upon Moses SMT toolkit. Log-linear model with
 - Phrase-based translation model
 - Language model
 - Word and phrase penalties
 - Distortion model
- Weights of the log-linear combination optimized with MERT
- Language model: 5-gram with KN smoothing
- Distortion model: "orientation-bidirectional-fe"
Model adaptation

TRAINING PARALLEL TEXTS

SRC | TGT

CLUSTERING

SRC | TGT

CLSTR_1

CLSTR_2

...

CLSTR_M

LM ESTIMATION

SRC | TGT

LM_1 | LM_1

LM_2 | LM_2

LM_M | LM_M

OFF-LINE

ON-LINE

OPTIMIZATION of SRC LMs

INTERPOLATION of TGT LMs

w_i

SRC TEXT

SMT

TRANSLATION
Clustering: IWSLT

- Dialog based
 - Consider each dialog as a bag of source and target words
 - Compute 2, 4, 6 and 8 clusters by means of CLUTO
 * direct clustering algorithm
 * cosine distance
 - Additional LM for BTEC+CT data

- Speaker based
 - Specific clusters for native agent/customer, and interpreter agent/customer
 - Additional LMs for BTEC and BTEC+CT data
Three LMs estimated on (English) Nespole! data:
- give-information
- request-information
- other

Such LMs are used to partition the IWSLT data on the basis of perplexity.

The clusters are mirrored on the Chinese side.

New LMs were trained on the IWSLT clusters.

Additional LM for all the BTEC+CT data.
Model adaptation

TRAINING PARALLEL TEXTS

SRC TGT

CLUSTERING

CLSTR₁ CLSTR₂ \ldots CLSTRₘ

SRC TGT

LM ESTIMATION

LM₁ \ldots LMₘ

SRC TGT

OPTIMIZATION of SRC LMs

INTERPOLATION

wᵢ

INTERPOLATION of TGT LMs

SMT

TRANSLATION

ON–LINE

OFF–LINE

Sanchis-Trilles et. al. Online LM adaptation Tokyo, Dec 1-2, 2009
On-line weight optimization

Four different approaches:

• Set specific weights:
 – LM weights estimated on the source side of the complete test set
 + Straightforward
 – Does not consider differences between sentences
 ⇒ benefit of approach may fade
On-line weight optimization

Four different approaches:

- Sentence specific weights:
 - One set of weights for each sentence in the test set
 - EM procedure allowed complete freedom
 - Weights estimated on few data
 ⇒ possibly, less reliable weights
On-line weight optimization

Four different approaches:

- Two-step weight estimation:
 1. Estimate sentence-specific weights
 2. Assign each source sentence to the cluster with the most weighted LM
 3. Re-estimate one single set of weights for each of such clusters
 + Mirror the clustering of the training data into the test set
 + Avoid possible data sparseness issues
On-line weight optimization

Four different approaches:

- **Oracle weight estimation:**
 - Estimate weights at sentence level on the reference texts (i.e. target side)
 - Provides a sort of upper bound
 - Not fair
Results for sentence-based weight estimation

Sanchis-Trilles et. al. Online LM adaptation Tokyo, Dec 1-2, 2009
Results

Results for two-step weight estimation

![Graph showing BLEU and PP for en-zh TEST: DEV2 with different methods and number of classes.]

- **Baseline**
- **Dialog**
- **Nespole**
- **ACI**
- **Oracle**

Sanchis-Trilles et al.
Online LM adaptation
Tokyo, Dec 1-2, 2009
Analysis

- Significant improvements are achieved in terms of perplexity for every setup
- Improvements in perplexity are not always mirrored by BLEU
- Oracle curves are unimodal with peak at six clusters
- Oracle setup confirms that the approach is appealing, room for improvement
- Two-step: does not improve sentence-based, but curves are unimodal
 → more predictable
- Dialog clustering improves or is as good as baseline:
 + two-step: seems to guarantee stable improvements
- Nespole! guided clustering does not seem to be effective
- Clustering according to ACI labels works well for EC (not for CE)
Analysis

- Training/development and test conditions are quite different

<table>
<thead>
<tr>
<th>test</th>
<th>mert</th>
<th>Δ BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>on</td>
<td>CE</td>
</tr>
<tr>
<td>DEV1</td>
<td>DEV2</td>
<td>-0.19</td>
</tr>
<tr>
<td>DEV2</td>
<td>DEV1</td>
<td>-0.67</td>
</tr>
</tbody>
</table>

- Clustering according to ACI labels produces speaker-specific LMs.
 - According to training!
 - This is bound to have an important effect
Future work

- Obtain data partitioning in an unsupervised manner
 - Surface form
 - PoS
 - ...
- Perform development/test-driven partitioning of the training data
- Source-to-target weight mapping
- Assess these techniques on larger tasks such as Europarl or NIST
Questions? Comments? Suggestions?