Towards Debugging Deep Neural Networks by Generating Speech Utterances

Bilal Soomro, Anssi Kanervisto, Trung Ngo Trong, Ville Hautamäki

School of Computing, University of Eastern Finland, Joensuu, Finland
{bilals, anssk, trung, villeh}@uef.fi

Abstract

Deep neural networks (DNN) are able to successfully process and classify speech utterances. However, understanding the reason behind a classification by DNN is difficult. One such debugging method used with image classification DNNs is activation maximization, which generates example-images that are classified as one of the classes. In this work, we evaluate applicability of this method to speech utterance classifiers as the means to understanding what DNN “listens to”. We trained a classifier using the speech command corpus and then use activation maximization to pull samples from the trained model. Then we synthesize audio from features using WaveNet vocoder for subjective analysis. We measure the quality of generated samples by objective measurements and crowd-sourced human evaluations. Results show that when combined with the prior of natural speech, activation maximization can be used to generate examples of different classes. Based on these results, activation maximization can be used to start opening up the DNN black-box in speech tasks.

Index Terms: speech recognition, deep neural networks

1. Introduction

DNNs have produced dramatic improvements over the previous baseline, by the combination of the increase of computing power, huge datasets and algorithmic tweaks [1]. Deep models are widely used in speech applications and have shown state of the art results in various speech tasks [2, 3, 4]. This success has led researchers to investigate how the inner workings of neural networks behave so they can be analyzed and further improved. Although DNNs have shown to perform exceptionally well in classification tasks, it has proven to be difficult to peek inside the black box [5].

Classical recognition models were based on the understanding that the complete processing pipeline can be split into disjoint tasks that are then separately optimized, i.e. splitting to a separate feature extraction and classification sub-tasks. Conventional ideas in how to split then depends a lot on the mental model that we have, sometimes to the detriment of the performance [6]. End-to-end (E2E) training and models have come to prevail in speech tasks, it has proven to be difficult to peek inside the black box [5].

In this work, we apply this technique to understand the inner workings of the speech commands classifier. We use DGN with activation maximization to produce speech utterances which classify strongly to a target class. We then evaluate the results using objective and perceptual tests (MTurk). We use the technique, in a proof of concept fashion, to debug misclassified test set utterances.

2. Sampling from a trained classifier

2.1. Activation maximization

Activation maximization is the task of finding input patterns which maximize the activation of a given unit [19]. This itself is an optimization problem. Let \(\theta \) be fixed neural network parameters and \(h_i(x; \theta) \) the activation of the neuron \(i \) and \(x \) is the input of the neural network. The whole neural architecture is then implicitly included in the function \(h_i \) using fixed parameters \(\theta \). Input \(x^* \) that maximizes the activation \(h_i \) is then

\[
x^* := \arg \max_x h_i(x; \theta).
\]

Since the neural network is differentiable, we can apply gradient descent with learning rate \(\alpha \) to obtain a local maximum of \(h_i \) around some starting position \(x \) by repeating

\[
x_{n+1} := x_n + \alpha \nabla_{x_n} h_i(x_n; \theta)
\]
In this work, we evaluate the use of activation maximization alone and activation maximization with such a prior in speech classification. We do this by evaluating generated samples with objective measures and human evaluations.

3. Experimental setup

3.1. Dataset

We use the Speech Commands corpus v0.02 [20] for the experiments. It contains 105,829 utterances recorded from 2,618 speakers. The utterances contain 35 commands in which there are twenty trigger words. The corpus also contains words that sound similar to the core words such as “Tree” and “Three”, which adds some challenge for the classification models. The recording environment of the speech utterances in the corpus vary in quality to mimic real world environments and different devices. The v0.01 of the Speech Commands corpus was featured in the TensorFlow speech recognition challenge on Kaggle [21]. The winner of that competition was able to achieve a classification accuracy score of 91%.

3.2. WaveNet Vocoder

As we wanted to listen to what the speech classifier had learned, we needed to synthesize the speech features back into audio. Currently, the state of the art speech synthesizer is the one designed by the DeepMind team called WaveNet [22]. WaveNet is an audio generative model based on the PixelCNN architecture [23]. It is able to produce the most natural sounding human voice samples and has been deployed at production level, such as in Google’s Voice assistant [23].

To synthesize audio from speech features, we used a pretrained WaveNet model which was trained on the LJSpeech corpus [24]. The WaveNet model was trained using mel-spectrogram features. We used the same feature extraction code provided in the github repository on our speech commands corpus and trained our speech classifier. As a result, we did not have to train our own WaveNet model.

3.3. Training Speech classifier

We extracted mel-spectrogram features from the Speech Commands corpus and used a standard CNN model for our speech commands classifier. Although CNNs are popular for machine vision tasks, they have proven to be successful in speech recognition tasks [3,4]. Figure 1 shows the structure of the CNN used in our speech classifier model. The classifier was trained for 50 epochs, and the model achieved an accuracy score of 82.75% in our test set.

3.4. Prior of speech with auto-encoders

For our maximization experiments with a prior, we trained an auto-encoder using the speech commands corpus. The decoder part is then combined with our speech classifier model. This enabled us to maximize the latent codes to generate speech features that activate our classifier’s target classes. Figure 1 shows the architecture of the decoder used in our activation maximization experiments. The bottleneck layer in our auto-encoder has no activation function.

1. https://github.com/r9y9/wavenet_vocoder
3.5. Activation maximization

To understand what the DNN “listens to” in speech recognition tasks, we set up two sets of activation maximization experiments to generate samples for synthesis: noise-to-class and class-to-class. Both sets of experiments were performed on the classifier model and the combined model.

In the noise-to-class experiment with only the classifier, we generated noise features and then used activation maximization to modify the features to the desired target classes. For our combined model, we generated random latent codes which were then maximized until they produced features which activated the target classes.

In the class-to-class experiment with only the classifier, we randomly picked speech features from our test set and maximized them to their respective classes. For our combined model, we encoded our test set speech features to latent codes and maximized them to their respective classes, essentially enhancing the classification.

We also used a separate speech classifier model, trained with the exact same specifications as our original speech classifier, to evaluate the resulting speech features. The purpose of this was to determine if the maximized speech features can fool a separate classifier, other than the one used to maximize the classes. The code is available on https://github.com/bilalsoomro/debugging-deep-neural-networks.

3.6. Perceptual experiments

We used Amazon’s Mechanical Turk service to get human listeners to rate our synthesized speech features on their quality. The participants were shown the class label of the recording and asked to rate it on a scale of one to five on how clear and audible the sample is. The rating was explained as (1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent), with “Bad” being described as “completely unclear speech”. We also provided examples of recordings that match the ratings to give our subjects a good idea on how to rate them.

There were a total of 650 speech features synthesized for perceptual evaluation. We selected features that were successfully maximized to the target classes. The recordings contained three maximized noise samples to each of our target classes generated from both the classifier model and the combined model. The recordings also contained three original and maximized test samples taken from both the classifier model and the combined model. When setting up the evaluation tests, we asked for five unique subjects to rate each of the recordings which added up to a total of 3,150 evaluations.

4. Results

4.1. Objective evaluations with separate classifier

We consider maximization successful if original and separate classifier both classify the maximized sample to the target class. To evaluate the performance of the classifier and combined models, we maximized 10,000 random latent codes / features per class into that class, and classified the maximized results with both classifiers. The maximization procedure worked 96.8% of the time with classifier setup, and 92.1% of time with decoder setup. However, when classifying these samples with the separate classifier, the classifier setup only worked 76.6% of the time while decoder setup worked 67.5% of the time. The per-class results are shown in Figure 5 for the decoder setup, where we can see the maximization worked for most the classes minus a few outliers.

By visually inspecting the output features from the maximization (Figure 2), we see that the classifier alone introduces seemingly random pixels to the feature space while still successfully doing the maximization. When combined with a decoder, the maximization introduces patterns reminiscent of forms and general speech structure (horizontal stripes, no individual pixels changed).

As expected, use of decoder limits modifications by maximization into speech-like structures, while maximization with the classifier alone is free to abuse the full space of possible features. This includes one-pixel changes (when represented as an image), which are unnatural for speech. However, despite decoders restrictions for the modifications, it helps maximization procedure to reach higher activation values.

4.2. Perceptual evaluations

Figure 3 shows results of human evaluations on quality of noise-to-class maximized samples, with and without decoder. Each bar is an average over 15 — 50 separate human evaluations. The WaveNet synthesizing alone caps the quality to around 4.0. Samples generated with decoder maximization constantly have higher average score than classifier alone. With decoder setup, 23/35 of the classes reach above 1.5 average quality rating, while with classifier setup only one class reaches this. Note that class one (“Bad”) was reserved for samples that did not contain any structures of speech, while class two (“Poor”) and above should contain audible speech.

In class-to-class experiments, the effect was less dramatic but opposite: classifier-maximized samples had on average quality 3.58 and decoder-maximized samples had 2.97. This is due to detrimental effect of the encoder-decoder setup which introduces artifacts and especially smoothing in the feature space (see Figure 2 for examples of decoded samples). These results indicate that the maximization with the decoder works better, even on the subjective level, with decoder setup being able to generate speech-like samples from random noise more often than classifier setup.

4.3. Debugging speech processing tasks

Our speech command classifier is able to obtain 82.75% classification accuracy, we would like to know the reason for misclassification on that 17.25% portion. As our classifier is trained primarily for speech command recognition task, Figure 4(a) sug-
Figure 3: Results of perceptual evaluations on quality of synthesized samples, ranging from one to five and averaged over ≈ 15 answers. The WaveNet synthesizing alone distorts the samples (green bars well below four). Using decoder produces higher quality samples than classifier alone overall, except for longer commands ("backward", "forward"). This indicates that decoder is able to generate higher quality samples.

Figure 4: Influence of the maximization process with respect to the command labels (colored) in (a), and the speaker labels (colored) in (b). The visualization is obtained by applying t-SNE on the latents. The misclassified cases are highlighted by red circle in (b).

Figure 5: Results of maximizing 10,000 random latent codes per class (rows) using the decoder setup. Columns represent classification score from a separate classifier, darker being higher score. Most classes are maximized correctly with values on diagonal ranging from 0.12 to 0.92, with some outlier classes like "up", "tree" and "go" which get maximized to other classes.

suggests a strong correlation between the maximized pattern and relevant command information. The algorithm had performed both micro and macro adjustment on the misclassified samples. The green arrow shows that our algorithm moves a cluster of green dots to a separated cluster outside the confusing zone (i.e. the macro adjustment). Additionally, the blue and orange arrow highlight its capability to re-distribute the points within a short distance to remove the confusion between the orange and blue command (i.e. the micro calibration). In general, the maximization process is only activated strongly in the highly confusing area, which is remarkably efficient since many proper clustered points remain unchanged.

We can hypothesize that one of the confounding factors in speech command classifier case is due to speaker variation. As a diagnostic algorithm, our approach could evaluate the effect of speaker variation on the classifier of speech command. Figure 4(b) provides strong evidence for the investigation:

- The points are clearly pushed away even though coming from the same speaker.
- The same command, which annotated by the number, are pushed to the same direction regardless of the speaker ID. An interesting case is highlighted by the red arrow when a data point of the command 23 from the blue speaker is maximized to group with the 23th from the red speaker.

As a result, we have strong indication that, indeed speaker variation had a strong role in the misclassification, and the issue can be mitigated by further adjusting the classifier (e.g. integrating the pattern extracted from the maximization process).

5. Conclusions

In this work, we evaluated maximization activation as a method to "listen to" what a speech classifier has learned. We performed experiments to maximize random noise to a class and as well as maximizing class to class. Similar to the prior work done on visualizing image classification models, we also observed that performing activation maximization directly on the classifier resulted in unnatural speech features. We observed that the decoder maximization resulted in more natural speech features. We were able to successfully fool a second classifier with features maximized from our combined decoder and classifier model. Our perceptual evaluation results also show that samples from decoder method are subjectively higher. In the future, this work can be applied to more complicated end-to-end classifier tasks i.e. variable length inputs in language identification.

6. Acknowledgements

This research was partially funded by the Academy of Finland (grant #313970) and Finnish Scientific Advisory Board for Defence (MATINE) project #2500M-0106. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp & V GPUs used for this research.
7. References

