Characteristics of Text-to-Speech and Other Corpora

Erica Cooper, Emily Li, Julia Hirschberg
Columbia University, USA
eecooper@cs.columbia.edu, el2857@columbia.edu, julia@cs.columbia.edu

1. Introduction

In recent years, text-to-speech synthesis (TTS) has become widespread in the form of mainstream consumer products such as mobile virtual personal assistants (Siri, Google Assistant), in-home devices (Amazon Echo), and other applications such as speech-to-speech translation. However, collecting the type of data required to build a high-quality TTS voice is typically very costly, and thus only undertaken with a major economic motivation. Typically, a professional voice talent reads dozens of hours of text with good coverage of the target domain in a soundproof room with a high-quality microphone and in as neutral and even a style as possible. They are typically instructed to maintain constant f0, energy, speaking rate, and articulation throughout. Without the resources to collect such data, is it still possible to create a high-quality voice? With the advent of statistical parametric speech synthesis (SPSS) such as Hidden Markov Model (HMM) based synthesis and neural network based synthesis, it is possible to create voices without necessarily having to collect large amounts of high-quality, single-speaker, in-domain speech. Furthermore, large amounts of available speech such as audiobooks and radio broadcast news present a promising source of data for building new voices. In this paper, we examine a number of corpora in different genres and collected for different purposes in order to compare their similarities and differences with respect to various acoustic and prosodic features. We aim to determine whether TTS corpora do in fact follow the “standard” TTS speaking style, whether other forms of professional and non-professional speech differ substantially from the TTS style, and which features are most salient in differentiating the speech genres.

2. Related Work

TTS speakers are typically instructed to speak as consistently as possible, without varying their voice quality, speaking style, pitch, volume, or tempo significantly [1]. This is different from other forms of professional speech in that even with the relatively neutral content of broadcast news, anchors will still have some variance in their speech. Audiobooks present an even greater challenge, with a more expressive reading style and different character voices. Nevertheless, [2, 3, 4] have had success in building voices from audiobook data by identifying and using the most neutral and highest-quality utterances. Furthermore, in our own prior work [5, 6, 7], we have created more natural-sounding voices out of radio broadcast news speech and data collected for automatic speech recognition (ASR) by selecting training utterances based on acoustic and prosodic criteria motivated by knowledge of what makes a “good” TTS voice. In the current work we will validate these assumptions about TTS voices empirically and identify similarities and differences when we compare them to other genres, for the purpose not only of identifying genres which may be most suitable for building TTS voices, but utterances within those genres which should be selected or discarded in the process.

3. Corpora

We examine statistical similarities and differences in various acoustic and prosodic features in a number of different corpora. Such corpora include TTS recordings, audiobook speech, radio broadcast news, and telephone conversations recorded to train ASR systems in a variety of languages.

3.1. TTS Corpora

The CMU ARCTIC databases [8] were collected in studio conditions for unit selection synthesis research and consist of approximately one hour per speaker of phonetically-balanced sentences collected from out-of-copyright texts. Currently, the database consists of two male and two female US English speakers, as well as Canadian, Scottish, and Indian English male speakers.

The SWARA corpus [9] contains studio-quality recordings from 17 volunteer Romanian speakers (9 female, 8 male) reading isolated sentences from newspaper articles. 880 utterances were common to all speakers.

The IIIT-H Indic databases [10] were collected for speech synthesis in Bengali, Hindi, Kannada, Malayalam, Marathi, Tamil, and Telugu. One volunteer speaker per language read 1000 Wikipedia sentences selected for phonetic balance, result-
ing in about an hour and a half of speech per database. Record-
ings are studio-quality.
All these TTS corpora were collected for research purposes
and made publicly-available data. In future, it would be inter-
esting to examine commercial-quality TTS data, although these
are of course proprietary.

3.2. Other Professional Speech
The Simple4All Tundra Corpus [11] consists of approximately
60 hours of speech from 14 audiobooks, each in a different lan-
guage, and each read by a single speaker (8 male, 6 female). It
was collected for the purpose of providing found data in many
languages for text-to-speech research. Hour-long subsets of the
data in each language have also been released, which have been
selected for neutral style using an active learning based ap-
proach [12]. We consider both the full corpus as well as the
1-hour subsets.

The Boston University Radio News Corpus (BURNC) [13]
is a corpus of professionally read radio broadcast news data
and includes speech from seven (four male, three female) FM
radio news announcers associated with the public radio sta-
tion WBUR. The main corpus consists of over seven hours of
news stories recorded in the station’s studio during broadcasts
over a two-year period. In addition, the same announcers were
recorded in a laboratory setting where they read 24 stories from
the radio news portion, first in a normal, non-radio style and
then, 30 minutes later, in their radio style. We examined the
broadcast radio news part of the corpus for our experiments
here.

3.3. ASR Corpora
The CALLHOME corpus [14] consists of spontaneous, ortho-
graphically transcribed telephone conversations between native
speakers of US English. The data includes 6 hours and 45 min-
utes of utterances from 86 different female speakers, 1 hour and
43 minutes from 32 male speakers, and 8 hours and 32 minutes
from speakers whose gender was not annotated in the corpus.
For this paper we only examine speakers of known gender.
The MACROPHONE corpus [15] was designed for the de-
development of dialogue systems, such as travel booking and other database-related tasks. The utterances were
read by 5,000 speakers over the phone. The data includes
speech from male and female adults and children. We restricted
our study to adult speaker of known gender (about 63 hours of
male speech and 84 hours of female speech).

The TARPA BABEL program [16] focused on the rapid cre-
ation of spoken keyword search systems for a diverse set of
languages which have historically not received a great deal of
attention from the speech research community. While the goal
of BABEL was primarily a speech recognition and spoken key-
word search task, we are currently using some of this multi-
speaker, conversational telephone data collected in 25 different
languages for BABEL to build TTS voices for these languages.
This data consists of both scripted and conversational telephone
speech data from a variety of LRLs; in this work, we examine
Telugu, Amharic, and Turkish. The unscripted speech was
recorded from a variety of native speakers conversing over the
telephone.

4. Features, Tools, and Methods
We extracted mean and standard deviation of f0, energy, speaking
rate (measured in syllables per second), articulation, which
we defined as (energy / speaking rate) * standard deviation of
pitch (such that a high articulation value would correspond to
low energy, slow speaking rate, and large variation in pitch),
NHR, jitter, and shimmer. Speaking rate was determined using
either the syllable labels included in the data for which a Fes-
tival [17] frontend or existing labels were available; or a Praat
script for approximating syllable nuclei otherwise [18]. Acous-
tic features were extracted using Praat [19]. Statistical compar-
isons were conducted using a sign test for a median, which tests
the null hypothesis that two samples are from populations with
the same median. We use a threshold of \(p < 0.05 \) for reject-
ing the null hypothesis. In addition, speakers were compared
through bar graphs plotting mean with +/- 1 SD.

5. Acoustic Features
According to [1], TTS speakers are typically instructed to speak
as consistently and with as little variation as possible. Interest-
ingly we did not observe that TTS speakers had consistently
lower standard deviation of f0 than did speakers in other gen-
res; in particular, male TTS data from the ARCTIC and IIIT-H
corpora had some of the highest SD of f0 out of all the male
data we examined. Nevertheless, the female data matched ex-
pectations better – female TTS data tended to have lower SD
of f0 than other genres. We compared the two ARCTIC female
speakers (‘slt’ and ‘clb’) to each other in terms of SD of f0, and
then compared them to the pool of female CALLHOME ASR
data (Table 1). Comparing ARCTIC speakers to each other, the
\(p \)-value is >0.05, and comparing ARCTIC to CALLHOME, the
\(p \)-value is <0.05. Thus, female ARCTIC speakers are relatively
different from their conversational English ASR data counter-
parts by the same metric, suggesting that female TTS speakers
can indeed be characterized by low SD of f0. While we do not
observe consistently lower standard deviations for pitch of TTS
data across genders, we do interestingly observe that all TTS
corpora in each language show a lower mean pitch than other
corpora in the same language and gender (Figure 1, although
for this study not all genres were available for all languages and
genders, so only available ones are shown; error bars show +/-
1 SD). This is consistent with anecdotal reports that listeners
generally prefer TTS voices with lower pitch, and with our ex-
perimental findings [5] that training a voice on a subset of the
lowest mean f0 utterances produces a voice that is preferred by
listeners over the baseline.

With respect to energy, we can see a clear separation be-
tween the conversational speech collected for ASR and corpora
of professional and read speech (Figure 2). As expected, the
TTS corpora, radio broadcast news, and audiobooks all have
lower standard deviations of energy, whereas MACROPHONE,
CALLHOME, and BABEL speech all have higher standard de-
viations.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>slt vs. clb (ARCTIC)</td>
<td>0.336</td>
</tr>
<tr>
<td>slt vs. CALLHOME</td>
<td>5.65E-245</td>
</tr>
<tr>
<td>clb vs. CALLHOME</td>
<td>1.01E-245</td>
</tr>
</tbody>
</table>
6. Speaking Rate and Articulation

We found that the different corpora (divided by gender) showed clear clusters with respect to mean and standard deviation of speaking rate (Figure 3). ASR corpora had both a high mean and standard deviation of speaking rate, and audiobooks had the lowest values for both. The TTS corpora clustered together with the broadcast news. MACROPHONE, which is read speech, showed a slower speaking rate as well. There did not appear to be significant gender differences.

Audiobooks show the highest level of articulation (Figure 4), as expected, explained by the fact that speakers in audiobooks may over-articulate to portray particular characters. The conversational data shows much more variation. TTS data and news show the lowest standard deviation for articulation. We also observe that the 1-hour Tundra subsets selected with an active learning based approach [12] show both a lower mean and standard deviation for articulation as compared to the full Tundra data. Moreover, we found that the 1-hour subsets of the Tundra data selected for neutral style had a lower standard deviation for jitter, and lower means and standard deviations for shimmer and NHR, than the full Tundra data. Plots of the data for each gender in each corpus can be seen in Figures 6, 7, and 8.

7. Voice Quality

The main differences we observed for gender were mainly differences in voice quality features, although some corpus effects could be observed as well. Speakers from the ARCTIC, SWARA, and BURNRC corpora tended to be on the lower end of both average and standard deviation of shimmer and NHR for their gender, with female speakers typically having lower values overall for average and standard deviation of NHR and jitter (a less clear gender effect was observed for shimmer). The CALLHOME female data was a notable outlier for all three features, having high means and standard deviations, and not clustering well with the other female data as a result. Furthermore, we observed that the 1-hour subsets of the Tundra data selected for neutral style had a lower standard deviation for jitter, and lower means and standard deviations for shimmer and NHR, than the full Tundra data. Plots of the data for each gender in each corpus can be seen in Figures 6, 7, and 8.

8. Discussion

We have measured whether TTS data does in fact follow the recommendations typically given to speakers, who are typically instructed to speak with very little variation in their voice quality, speaking style, pitch, volume, or tempo [1]. However, when we compare these features across multiple genres we find that TTS speakers do not always differ from speakers in other genres in these characteristics. More importantly, we have found that several found-data genres do model TTS corpora in important ways.
First, we have found that a low standard deviation of f0 does not in fact consistently characterize TTS corpora, and thus may not be an important feature for selecting found data for building TTS systems. While female TTS data does have a lower SD of f0 relative to other types of data, especially compared to conversational ASR speech, this is not the case for male TTS data. However, we have found that TTS data does tend to have a lower mean pitch relative to other genres. We have also found that TTS data has a lower SD of energy, similar to broadcast news and audiobooks, but different from ASR corpora. TTS data is also quite similar to broadcast news in terms of speaking rate and level of articulation (relatively low mean and SD), whereas audiobooks tend to have even lower speaking rate and a very high level of articulation. Finally, TTS speakers exhibit low mean and SD for shimmer and NHR, much like professional broadcast news speakers and audiobook readers. These findings suggest objective justification for building TTS systems from particular found-data genres but also indicate the criteria that should be used to select data from other, less similar corpora, for building TTS systems.

9. Conclusions and Future Work

In this work, we have identified features that characterize TTS corpora as well as which found-data corpora are most similar to TTS data – radio news and audiobooks. In so doing, we have also identified which features are important to use when choosing subsets of utterances from the less similar genres we examined, such as conversational corpora. Thus, we can not only demonstrate why certain genres are particularly well adapted for TTS voice construction but we can predict, from empirical findings, what subsets of other corpora should be either included or excluded from TTS voice construction. In the future, we would like to extend this work to additional languages for which we do have TTS data in order to enable a fuller comparison across languages. We would like to further examine language effects versus genre effects as well, since our features may be language-dependent. We would also very much like to compare commercial TTS corpora to the research TTS corpora used in these experiments.

We would also like to use our findings to construct machine learning based approaches for identifying the best parts of a found-data corpus to use for building TTS voices, similar to [12], which used active learning to discover sentences similar to a small set of audiobook utterances labeled as ‘neutral’ by a human listener. There are additional challenges we would like to explore for automatically selecting the most neutral or TTS-like utterances from other genres of found data other than audiobooks, such as variation in recording quality, presence of background noise, and a potentially large number of different speakers. If we can develop approaches to select the most TTS-like utterances from heterogeneous sources of found data, this will enable us to more quickly and easily build intelligible and natural-sounding TTS voices for many low-resource languages.

10. Acknowledgements

This work was supported by the National Science Foundation under Grants IIS 1548092 and 1717680.
11. References

