Thematicity-based Prosody Enrichment for Text-to-Speech Applications

Mónica Domínguez1, Mireia Farrús1, Leo Wanner2,1

1Universitat Pompeu Fabra, Barcelona, Spain
2Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
monica.dominguez@upf.edu, mireia.farrus@upf.edu, leo.wanner@upf.edu

Abstract

Theoretical studies on the information structure–prosody interface argue that the content packaged in terms of theme and rhyme correlates with the intonation of the corresponding sentence as regards to rising and falling patterns (L*+H LH% and H* LL% respectively). When such a correspondence is used to derive prosody in text-to-speech applications, it is often the case that ToBI labels are statically mapped to acoustic parameters. Such an approach is insufficient to solve the problem of monotonous synthetic voices for two reasons: it is repetitive with respect to prosody enrichment, and a binary flat themerheme representation does not serve to describe properly long complex sentences. In this paper, we introduce a methodology for a more versatile thematicity-based prosody enrichment based on: (i) a hierarchical tripartite thematicity model as proposed in the Meaning–Text Theory, and (ii) a corpus-based approach for the automatic extraction of acoustic parameters (fundamental frequency, breaks and speech rate) that are mapped to a varied range of prosody control tags of the synthesized speech. Such a prosody enrichment has shown to provide higher results in a perception test when implemented in a TTS system.

Keywords: prosody, information structure, theme, rhyme, TTS, SSML.

1. Introduction

The consolidation of technologies that enable human users to have a conversation with a virtual assistant suggests to advance further and tackle the complex subtleties of human spoken communication. One of these subtleties is natural prosody, which plays a role in communication in that it expresses the communicative intention and the emotional state of the speaker. This role has been largely left aside in speech technologies, partially due to its intrinsic difficulty to be formalized in a language model that can be used in computational tasks. Such a model should ideally involve a definition of how communicative intention is translated into a formal structure and how this structure is then projected onto prosody generation. In linguistics, the Information Structure (IS) is considered to accommodate for the communication intention of the speaker \cite{1, 2}. Existing studies focused so far under the heading of Information Structure–Prosody Interface mainly on the correlation between prosody and one of the dimensions of the IS, namely theme–rheme \cite{3, 4}. Several works in the context of speech synthesis (see, e.g., \cite{5, 6, 7}) draw upon a theme (i.e., “what is being talked about”)–rheme (i.e., “what is being said”) division. Such a binary flat division is used to establish a one-to-one correspondence between theme–rheme spans and rising–falling intonation patterns in terms of ToBI labels. Some text-to-speech (TTS) applications generate prosodic contours based upon this correspondence. However, this methodology has several drawbacks: (i) it fails to describe adequately longer sentences with complex syntactic and communicative structures (thus, we see that rhyme consists de facto of the whole factual statement); (ii) it ignores other prosodic elements, such as rhythm and intensity (that also relate to information and prosody structure \cite{8, 9}); and (iii) it presupposes a one-to-one mapping between ToBI labels and associated acoustic parameters (primarily, variations of fundamental frequency). These drawbacks make this type of approach insufficient when it comes to find remedies for monotonous prosody in synthesized speech.

In what follows, we propose a methodology to derive thematicity–based prosody enrichment using a formal representation of thematicity described by Mel’čuk \cite{10} as one dimension of communicative (aka information) structure1. Mel’čuk’s representation of thematicity includes theme, rhyme and a third span, the specifier, which sets the context of the sentence. Moreover, thematicity is defined over propositions that allows embeddedness within spans. Thus, thematicity is hierarchical in nature.

Our methodology is based on corpus analysis of the IS–prosody interface using the Mel’čukian representation of hierarchical thematicity. With respect to prosody representation, an automatic computation of mean prosodic parameters is carried out. The analysis of the distribution of three normalized acoustic parameters, namely, fundamental frequency (F0), intensity, and speech rate over hierarchical thematicity spans in our corpus is used to derive a varied range of prosodic modifications. The methodology is tested in an implementation setting using SSML prosody tags in a TTS application, which is evaluated with a perception test.

The remainder of paper is structured as follows. The next section describes the motivation and background of the presented approach and summarizes the works that are related to ours. Section 3 presents our methodological approach, outlining how synthetic prosody is enriched by thematicity information departing from corpus analysis. Section 4 presents an implementation of such a thematicity-based prosody enrichment of the synthetic speech. The evaluation is introduced in Section 5. Finally, conclusions and future work are presented in Section 6.

2. Motivation and Background

Different linguistic schools have long stated that Information Structure (IS), and, in particular, the dichotomy referred to as theme–rheme \cite{11}, given–new \cite{12}, or topic–focus \cite{13} is related to intonation.2 Moreover, it has been claimed that when prosody reflects thematicity structure, comprehension of the

1Communicative structure includes eight different dimensions, namely: thematicity, givenness, focalization, perspective, emphasis, presupposition, unitarness and locutionality.

2In our work, we use the first denotation, i.e., theme–rheme or the thematicity.
Recent empirical studies in different languages provide evidence of such an improvement; cf., e.g., [15] for German and [16] for Catalan. Therefore, there is reason to assume that a conversational application that considers, on the one hand, content packaging in terms of thematicity and, on the other hand, the relation between thematicity and prosody will lead to more natural conversation settings.

Some attempts to include thematicity in TTS applications were made in the past. Consider, for instance, Steedman’s work [5] on the correlation of theme and rhyme with rising and falling intonation patterns based on a question–answer setting. An implementation on the grounds of Steedman’s characterization was tested in concept-to-speech (CTS) applications [6, 7, 17]. However, a derivation of thematicity that is fully dependent on a question-answer setting is limited to a specific conversational environment and, thus, fails to deal with the problem of monotony of TTS applications.

In contrast to IS models that propose a partition of sentences into a theme and a rhyme, Mel’čuk [10] argues in the context of the Meaning–Text Theory for a tripartite hierarchical division (‘theme’, ‘rheme’, and ‘specifier’ – the element which sets the utterance’s context) within propositions that further permits embeddedness of communicative spans; consider (1) for illustration of hierarchical thematicity (annotated following the guidelines established in [18]) of the sentence *Ever since, the remaining members have been desperate for the United States to rejoin this dreadful group*. A total of five partitions are identified, including three spans at level 1, a specifier (SP1), theme (T1) and rhyme (R1), and two embedded spans at level 2 in the rhyme, a theme (T1(R1)) and a rhyme (R1(R1)).

(1) *Ever since,* [SP1] *the remaining members* [T1] *have been desperate* [for the United States] [T1(R1)] *to rejoin this dreadful group.* [R1(R1)]

A hierarchical thematicity structure of this kind has been shown to correlate better with ToBI labels than binary flat thematicity [19, 20]. However, such a correlation still does not solve the problem of a one-to-one mapping between a specific intonation label (e.g., H*4) to a static acoustic parameter (e.g., an increase of 50% in fundamental frequency). In what follows, we propose a methodology to derive a more varied range of prosodic cues based on the analysis of the available corpus of read speech annotated with hierarchical thematicity and prosody; see [21]. Furthermore, we optimize a preliminary realization (see [22]) that converts hierarchical thematicity labels into SSML prosody tags.

3. Methodology

According to Xu’s review of the methodologies in the field of speech prosody [23], theoretical studies on the syntax-pragmatics-prosody interfaces use an “analysis by introspection” as methodological approach. He argues that this approach is imprecise as the assignment of prosody “by intuition” is inevitably unreliable.

The present paper proposes an approach that tests a formal representation of IS in speech synthesis experiments. This work envisages the study of the information structure–prosody interface from a methodological perspective based on an empirical

3As more than one thematicity span may exist within the same proposition, abbreviations include a number (e.g., ‘SP1’) that indicates the number of occurrences at each level (e.g., ‘SP2’ would be the second specifier in a specific thematicity level).

4The SSML prosody tags allow control of six optional attributes: overall pitch, pitch contour, pitch range, speech rate, duration, and volume.
into the synthesis stage for the thematicity-based prosody enrichment.

4. Implementation
The proposed methodology has been tested in an implementation setting using the corpus in [21] and the prosody enrichment tool presented in [22]. The working dataset contains a total of 109 sentences extracted from the Wall Street Journal and read by twelve native speakers of American English, that is, a total of 1,308 speech samples are analyzed to infer the acoustic data. As acoustic parameters, relative values of F0, intensity and speech rate are used in the implementation. In what follows, we present results from the analysis and synthesis pipelines in Section 4.1 and 4.2 respectively.

4.1. Prosodic parameters distribution in hierarchical thematicity
The analysis of the distribution across speakers of average z-scores for intensity, F0 and speech rate (abbreviated as z_int, z_F0 and z_sr, respectively) is presented in two figures grouped in level 1 (L1) (cf., Table 1) and level 2 (L2) thematicity (cf., Table 2).

Table 1: Distribution of prosodic parameters in L1 thematicity.

<table>
<thead>
<tr>
<th></th>
<th>z_int</th>
<th>z_F0</th>
<th>z_sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.16</td>
<td>0.47</td>
<td>0.95</td>
</tr>
<tr>
<td>R1</td>
<td>-0.04</td>
<td>-0.17</td>
<td>0.30</td>
</tr>
<tr>
<td>SP1</td>
<td>-0.07</td>
<td>0.15</td>
<td>1.76</td>
</tr>
</tbody>
</table>

Table 2: Distribution of prosodic parameters in L2 thematicity.

<table>
<thead>
<tr>
<th></th>
<th>z_int</th>
<th>z_F0</th>
<th>z_sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1(T1)</td>
<td>0.27</td>
<td>0.57</td>
<td>0.23</td>
</tr>
<tr>
<td>T1(R1)</td>
<td>0.12</td>
<td>0.21</td>
<td>1.30</td>
</tr>
<tr>
<td>T1(SP1)</td>
<td>-0.11</td>
<td>-0.07</td>
<td>2.25</td>
</tr>
<tr>
<td>R1(T1)</td>
<td>0.27</td>
<td>0.80</td>
<td>0.89</td>
</tr>
<tr>
<td>R1(R1)</td>
<td>-0.23</td>
<td>-0.41</td>
<td>0.48</td>
</tr>
<tr>
<td>R1(SP1)</td>
<td>-0.21</td>
<td>-0.21</td>
<td>1.11</td>
</tr>
<tr>
<td>SP1(SPI)</td>
<td>0.25</td>
<td>-0.06</td>
<td>3.13</td>
</tr>
</tbody>
</table>

Table 3: Conversion from z-scores to SSML attribute values.

<table>
<thead>
<tr>
<th>Thematicity</th>
<th>z_int</th>
<th>z_F0</th>
<th>z_sr</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.15</td>
<td>15</td>
<td>0.50</td>
<td>95</td>
</tr>
<tr>
<td>R1</td>
<td>-0.05</td>
<td>-5</td>
<td>-0.20</td>
<td>-20</td>
</tr>
<tr>
<td>SP1</td>
<td>-0.10</td>
<td>-10</td>
<td>0.15</td>
<td>15</td>
</tr>
<tr>
<td>R1(T1)</td>
<td>0.30</td>
<td>30</td>
<td>0.50</td>
<td>25</td>
</tr>
<tr>
<td>R1(R1)</td>
<td>-0.25</td>
<td>-25</td>
<td>-0.40</td>
<td>-15</td>
</tr>
</tbody>
</table>

4.2. Thematicity–based prosody enrichment
The open source software MaryTTS [27] was used for the implementation of thematicity-based prosody enrichment. The default synthesized speech output has been enriched using MaryXML prosody specifications\(^6\), which follow the SSML recommendation\(^7\).

The SSML prosody tags allow control of six optional attributes (overall pitch, pitch contour, pitch range, speech rate, duration and volume). These attributes can be modified independently or in combination. For our implementation, overall pitch and speech rate were chosen individually and in combination. Absolute (e.g., ‘+50Hz’ for increasing a specific amount of hertz (Hz) in F0) and relative values can be used to applied the modification. We use relative values within a range of ±100% because the values are extracted from the corpus for the normalized deviation with respect to the sentence of each prosodic parameter (F0, intensity and speech rate). An example of a SSML prosody tag for modification of two prosodic elements is presented below:

Example (1)

<prosody rate="-10%" pitch="+20%">text to be modified</prosody>

Moreover, the SSML boundary tag that controls the introduction of pauses at a specific location was also used after each thematicity span. The duration of the break is specified in milliseconds (ms). An example of SSML boundary tag is introduced below:

Example (2)

Text before the break <boundary duration="100"/> text after the break.

A set of sentences is selected for the implementation and assessment of the thematicity-based prosody enrichment in MaryTTS using a statistical voice. The distribution of prosodic parameters in the whole corpus (described in the previous section) is mapped onto the values that the attribute of the SSML prosody tag will take. Table 3 presents the characterization of thematicity for the spans selected for the implementation\(^8\). Some values (especially those for speech rate) were scaled to an appropriate percentage, because previous testing using SSML prosody tags showed an undesired distortion when a very high attribute value was inserted. For instance, if an increase of 95% in speech rate

\(^5\) Available at http://mary.dfki.de/

\(^6\) http://mary.dfki.de/documentation/maryxml/index.html

\(^7\) https://www.w3.org/TR/speech-synthesis/

\(^8\) Figures are round up to the closest half tenth.
was specified, the resulting speech would sound far too quickly with an associated F0 increase, and consequently and sometimes, unintelligible.

5. Evaluation

For the prosody enrichment evaluation, a selection of the following six annotated sentences has been made:

1. [The luxury auto make]T1 [last year sold 1,214 cars in the U.S.](R1).
2. [(For its employees]T1(T1) [to sign up for the options]R1(T1)T1, [(a college]T1(R1) also must approve the plan]R1(R1)R1.
3. [Mr. Mayors hope {[(that]SP1(P2) [references to press freedom]T1(P2) [would survive unamended]R1(P2)]P2}T1 [seems doomed to failure]R1.
4. [[The researchers]T1(S1) [said]R1(SP1)SP1 [they]T1 [have isolated a plant gene {[(that]T1(P2) [prevents the production of pollen]R1(P2)]P2}R1.
5. [(When]SP1(P2) [he]T1(P2) [sent letters [offering 1,250 retired major leaguers]T1(P4), [the chance of another season]R1(P4)P4]R1(P2)]P2T1, {{[730]T1(P3) [responded]R1(P3)P3}R1.
6. [Men [(who]T1(P2) [have played hard all their lives]R1(P2)]P2T1 [aren’t about to change their habits]R1, [[be]T1(S1) [says]R1(S1)\].

Each sentence was synthesized using five different prosody contours (one by default and four modifications using SSML tags)\(^9\). Thus, thirty synthesized speech samples have been evaluated in the perception test taken by thirty participants, i.e., a total amount of 900 answers have been considered in the evaluation. Prosody modifications included F0, speech rate and breaks after thematicity spans in isolation and in combination. Intensity was excluded from the evaluation as it did not yield the expected effect according to the authors’ criteria. The test consisted in two parts: (i) a Mean Opinion Score (MOS) test rating at a Likert scale from 1 to 5 rating level of expressiveness\(^10\) and (ii) a pairwise comparison where the most expressive sentence is chosen between the pairs baseline–F0, combination–break and F0–combination.

<table>
<thead>
<tr>
<th></th>
<th>baseline</th>
<th>F0</th>
<th>speech rate</th>
<th>break</th>
<th>combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>sent 1</td>
<td>2.03</td>
<td>2.67</td>
<td>2.30</td>
<td>2.53</td>
<td>2.43</td>
</tr>
<tr>
<td>sent 2</td>
<td>2.97</td>
<td>3.07</td>
<td>3.10</td>
<td>2.83</td>
<td>3.00</td>
</tr>
<tr>
<td>sent 3</td>
<td>2.93</td>
<td>2.83</td>
<td>2.40</td>
<td>2.37</td>
<td>2.90</td>
</tr>
<tr>
<td>sent 4</td>
<td>2.83</td>
<td>2.67</td>
<td>2.90</td>
<td>2.70</td>
<td>2.60</td>
</tr>
<tr>
<td>sent 5</td>
<td>3.03</td>
<td>2.87</td>
<td>2.73</td>
<td>3.00</td>
<td>3.06</td>
</tr>
<tr>
<td>sent 6</td>
<td>2.40</td>
<td>2.67</td>
<td>3.17</td>
<td>2.73</td>
<td>2.17</td>
</tr>
<tr>
<td>Average</td>
<td>2.70</td>
<td>2.79</td>
<td>2.77</td>
<td>2.69</td>
<td>2.61</td>
</tr>
</tbody>
</table>

Table 4: MOS test results.

Results from the MOS test are displayed in Table 4. T-tests were performed to observe the level of significance with a confidence of 95%. Bold figures represent statistically significant improvements over the baseline (t-test, \(p < 0.05\)). Figures in italic represent those results in which the lower value is also statistically significant (t-test, \(p < 0.05\)) with respect to the baseline. In overall, F0 and speech rate modifications are rated higher than the default voice. Looking at each specific sentence, thematicity-based modifications tend to be rated higher.

Sentences 1 and 6 show statistically significant differences with respect to the baseline for F0 and break modifications (in sentence 1) and for speech rate in sentence 6. Sentence 3 shows statistically significant worse results for modifications concerning speech rate and break compared to the baseline.

In most of the sentences, F0, break and speech rate enrichments are perceived as more expressive than the baseline. All in all, this buttresses the idea that communicative spans are important for generation of expressive synthesized speech, and that a variety of prosodic cues contributes to signaling the IS–prosody correspondence. However, as four out of six sentences do not show statistically significant differences compared to the baseline, results should be interpreted with caution. One plausible explanation to this is the fact that the default prosody sometimes contains unnatural prosody, in some cases artifacts, that cannot be overridden by SSML tags. Consequently, the perception of human listeners might be negatively affected in both cases.

6. Conclusions and future work

Given the relevant role of the Information Structure–Prosody Interface in human communication, it seems reasonable that next generation virtual assistants face new challenges in adopting communicatively-oriented models. Current speech technologies have been oblivious to advances in theoretical fields studying this correlation, basically due to the lack of a formal representation of the communicative (or information) structure and limited capabilities of prosody enrichment standards to achieve variability in implementation settings.

The present study provides a methodology for a more versatile integration of the IS–prosody interface in TTS applications. Such methodology contributes in several aspects to the state-of-the-art: (i) a formal description of hierarchical thematicity is used; (ii) the prosodic representation is automatically computed and tested in a TTS application; and (iii) a derivation of prosody enrichment is done empirically from a corpus of read speech. All in all, this study pivots the transition from theoretical work on the IS–prosody interface to the integration of a corpus-driven prosody enrichment to achieve more expressive synthesized speech.

One limitation of the current study is that it only considers relative acoustic parameters over rather large text segments. Key aspects of prosody modeling, like F0 contour generation in terms of prominence and phrasing remain to be looked into in future work.

7. Acknowledgements

This work is part of the KRISTINA project, which has received funding from the European Unions Horizon 2020 Research and Innovation Programme under the Grant Agreement number H2020-RIA-645012. It has been also partly supported by the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502). The second author is partially funded by the Spanish Ministry of Economy and Competitiveness through the Ramón y Cajal program.
8. References

