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ABSTRACT

Over the past few years, we have been investigating the problem
of utilizing artificial neural networks for phonetic classification. In this
paper, we will describe several extensions to our earlier work, utilizing
a segment-based approach. We will formulate our segmental framework
and report our study on the use of multi-layer perceptrons for detec-
tion and classification of phonemes. Issues related to computational
requirements and input representations will also be discussed. Our in-
vestigation is performed within a set of experiments that attempts to
recognize 38 vowels and consonants in American English independent of
speaker. When evaluated on the TIMIT database, our system achieves
an accuracy of 56%.

INTRODUCTION

Recently, we have been investigating the use of artificial neu-
ral networks (ANN) for phonetic classification. That is, given a
time region in an utterance, the network is asked to identify the
phonetic unit in it. Our study was performed on the constrained
task of using multi-layer perceptrons (MLP) to classify different
speech sounds in American English [1,2]. When evaluated on
38 vowels and consonants, our network achieved a classification
accuracy of about 70% [1].

Thus far, the neural networks research community has placed
heavy emphasis on the problem of pattern classification. In many
applications, including speech recognition, one must also address
the issue of detection. Thus, for example, one must detect the
presence of phonetic segments as well as classify them. Recently,
the community has moved more towards recognition of continu-
ous speech. A network is typically used to label every frame of
speech in a frame-based recognition system [3,4,5].

Our goal is to study and exploit the capability of ANN for
speech recognition, based on the premise that ANN may offer a
flexible framework for us to utilize our improved, albeit incom-
plete, speech knowledge. As an intermediate milestone, this pa-
per extends our earlier work on phonetic classification to context-
independent phonetic recognition. Thus we need to locate as well
as identify the phonetic units. Our system differs from the ma-
jority of approaches in that a segmental framework is adopted.
The network is used in conjunction with acoustic segmentation
procedures to provide a phonetic string for the entire utterance.

The organization of this paper is as follows. In the next sec-
tion, we will formulate our segmental framework and address
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some of the computational issues. We will then describe our
experiments on phonetic classification and recognition. Finally,
we will report some results and discuss some of our recent studies
on using different input representations.

SEGMENTAL FORMULATION

In our segmental framework, a phonetic unit is mapped to
a segment explicitly delineated by a begin and end time in the
speech signal. Segmental frameworks have been investigated by
others [6,7,8] and contrast with the prevailing frame-based struc-
ture used by most HMM systems [9), where sequences of obser-
vation frames are assumed to be statistically independent from
each other. We believe that a segmental framework offers us more
flexibility than is afforded by a frame-based approach, and could
ultimately lead to superior modelling of the temporal variations
in the realization of underlying phonological units. It is for this
reason that we base our system on such an approach.

Let & denote the best sequence of phonetic units in an utter-
ance. We have taken a stochastic segment approach so that the
probability of the best sequence, p(&), is maximized. Specifically,

&=agmax [[ playlsdp(s) 1S5<Ne (1)

s;€d

where & is any possible sequence of time segments consisting of
{s1,82,...}, p(a;ls;) is the probability of observing a phoneme,
ay, in a time segment, s;, p(s;) is the probability of a valid time
segment, and N, is the number of possible phonetic units. In
order to perform recognition, the two probability measures in
Equation 1 must be estimated. The first term, p{c;ls;), is a set
of a-posteriori probabilities and thus can be viewed as a classifi-
cation problem. The second term, p(s;), is a set of probabilities
of valid time regions and thus can be estimated as a segmentation
problem.

Segmentation

In order to estimate the segment probabilities, p(s;), in Equa-
tion 1, we have formulated segmentation into a boundary classi-
fication problem. Let {b1,bs,..,bx} be the set of boundaries that
might exist within a time segment, s;, as shown in Figure la.
These boundaries can be proposed by a boundary detector, or
they can simply occur at every frame of speech. We define p(s;)
to be the probability that all the boundaries within s; do not
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(a):

(b):

Figure 1: Schematic diagrams for estimation of (a) segment probabil-
ity, p(si), and (b) boundary probability, p(bx). The boundaries can be
proposed by a boundary detector, or they can simply occur at every
frame. See text.

exist. To reduce the complexity of the problem, assume by is
statistically independent of b; for Vk # [. Thus,

p(s;) = p(Zl,Ez, ,.,B()
— (1 )p(52)-(B) (@)

where p(b; ) stands for the probability that the k% boundary does
not exist. As a result, the probability of a segment, p(s;) can be
obtained by computing the probabilities of the boundaries, p(b),
within the segment. As we will discuss in a later section, by
using the time-aligned transcription, we can train the boundary
probabilities in a supervised manner.

Phonetic Classification

Once the probability of a segment, p(s;), is obtained, we still
need to classify it, i.e. compute the probabilities of the phonetic
units in the segment, p(a; | si). Again, the time-aligned tran-
scription can be used to train the probabilities in a supervised
manner. We have discussed this in earlier papers [1,2]. In a later
section, we will discuss some of our recent experimental results.

Computational Requirements

One of the disadvantages of our segmental framework is that
the amount of computation involved can be very significant. Let
N denote the number of frames in an utterance. The number of
possible segments, Ny, is, therefore, N (N —1)/2, resulting in 27V =2
distinct segmentations. Since phonetic classification is needed in
each possible segment, the amount of computation and the size
of the search space can be prohibitively large. An example is
illustrated in Table 1. If an utterance is 3 seconds long, and is
analyzed once every 5 msec., N; = 180, 000.

Several techniques can be adopted to reduce the computa-
tional requirement. First, it is clear that certain search tech-
niques, such as those that involve Viterbi search, can reduce the
amount of computation. In the following paragraphs, we discuss
some other techniques that we have explored.

Boundary Pruning As we have previously discussed, a set
of boundaries can first be proposed by a boundary detector. Let
N, denote the number of boundaries proposed by a boundary
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[ 1 N, EXampIe]
Exbaustive | N(N -1} | 180,000
Enumeration 2
Boundary Ny(Ny — 1)1 7,200
Pruning I
Binary 2N, —3 240
Hierarchy

Table 1: Computational requirements for segment-based frameworks.
N stands for the number of frames in an utterance, Ny stands for the
number of boundaries proposed in the same utterance. Example is
based on an utterance of 3 seconds long, N = 5N, and an analysis rate
of 200 times/second.

detector in an utterance. If a segment is constrained to have
its end points located at the proposed boundaries, the number
of possible segments, N, is equal to Ny(N, — 1)/2. If N, is
small compared to N, N, can be significantly reduced. In the
SUMMIT system for instance [8], N =~ 5N, thus reducing N, by
more than an order of magnitude. If an utterance is 3 seconds
long, N, = 7,200.

Segment Pruning There are many alternatives that can
be used to reduce the number of segments. For example, Kopec
and Bush used conservative duration estimates to eliminate many
candidate segments [6]. In the SUMMIT system, a binary hier-
archy called dendrogram is constructed based on some proposed
boundaries. Regardless of the specific implementation, such a bi-
nary hierarchical representation results in Ny = 2N, — 3. Again,
if an utterance is 3 seconds long, and N = 5N;, then Ny = 240,
a reduction in computation by almost 3 orders of magnitude.

Thus there is a continuum in the computational requirement
for a segment-based recognition system. By adopting different
pruning techniques, the amount of computation can be made
more manageable. However, the performance of the overall recog-
nition system depends on the reliability of the pruning techniques
and the robustness of the boundary detector. In the next section,
we will describe experiments and compare results using different
techniques.

EXPERIMENTS

In the previous section we outlined our segmental formulation
and contrasted the computational requirements needed for differ-
ent techniques. In this section we will discuss some experiments
using MLP, First, we will describe our task and corpus. We will
also review our work on phonetic classification and discuss how
acoustic segmentation can be performed using MLP. Finally, we
will report our phonetic recognition results.

Tasks and Corpora

The experiments described in this paper deal with classifica-
tion and recognition of 38 phonetic labels representing 14 vowels,
3 semivowels, 3 nasals, 8 fricatives, 2 affricates, 6 stops, 1 flap and
1 silence. This particular set was chosen because it has been used
in other recent evaluations within and outside our research group.
Within the context of classification, the networks are given a seg-
ment of the speech signal, and are asked to determine its pho-
netic identity. Within the context of recognition, the networks
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[Corpus| Set [Speakers [ Sentences | Tokens | Type]
[ training 300 1500 55,000 sx
testing 50 250 9,000) sx
[§ training 500 4000 150,000 | sx/si
testing 50 400 15,000 | sx/si

Table 2: Corporal and II extracted from the TIMIT database. Corpus
1 contains only sx sentences, whereas Corpus II contains both sx and
si sentences. The speakers in the testing sets for both Corpus I and
Corpus II are the same.

are given an utterance, and are asked to determine the identity
and locations of the phonetic units in the utterance. All experi-
ments were based on the sentences in the TIMIT database [10].
As summarized in Table 2, Corpus I contains 1,750 sx sentences
spoken by 350 male and female speakers, resulting in a total of
64,000 phonetic tokens. Corpus II contains 4,400 sx and si sen-
tences spoken by 550 male and female speakers, resulting in a
total of 165,000 phonetic tokens.

Phonetic Classification

As previously discussed, estimation of the a-posteriori prob-
ability, p(a; | s;) in Equation 1 can be viewed as a classification
problem. Many statistical classifiers can be used. We have chosen
to use the MLP, due to its discriminatory capability, as well as
its flexibility in that it does not make assumptions about specific
statistical distributions or distance metrics. In addition, earlier
work by Bourlard and Welleken shows that the outputs of MLP
can approximate a-posteriori probabilities [11].

In classifying the 38 vowels and consonants, we discovered
some major problems in training the network. These problems
were subsequently overcome by procedures such as judicious ini-
tialization to enable the network to learn quickly and converge
to a better local minimum, normalization of inputs to enhance
learnability of the network, adaptive gain to enable the network
to pay similar attention to different phonetic units, and modular
training to reduce training time [1].

There were two representations used as input for the MLP
classifier. The first representation was identical to that in the
SUMMIT system, and consisted of 82 acoustic attributes. These
segmental attributes were generated automatically by a search
procedure that uses the training data to determine the settings of
the free parameters of a set of generic property detectors using an
optimization procedure[12]. The second representation consisted
of a vector of three average spectra which corresponded to the left,
middle, and right thirds of a segment. The spectra were the mean-
rate and synchrony outputs of a 40 channel auditory model [13].
Thus, there were 120 dimensions used for each representation.
Finally, segment duration was also included.

Boundary Classification

In our segmental framework formulated in Equation 1, the
main difference between classification and recognition is the in-
corporation of a probability for each segment, p(s;). As described
previously in Equation 2, we have simplified the problem of esti-
mating p(s;) to one of determining the probability that a bound-
ary exists, p(by).
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To estimate p(d;), @ MLP with two output units iz used, one
for the valid boundaries and the other for the extraneous bound-
aries. By referencing the time-aligned phonetic transcription, the
desired outputs of the network can be determined. In our cur-
rent implementation p(b;) is determined using four abutting seg-
ments, as shown in Figure 1b. These segments are proposed by
the boundary detector in the SUMMIT system. Let t; stand for
the time at which b; is located, and s; stand for the segment
between #; and t;41, where #;3.1 > ¢;. The boundary probability,
p(b;), is then determined by using the average mean-rate response
in $i-~2,8i-1, $i, and s;41 as inputs to the MLP. Thus the network
has altogether 160 input units.

Results

Phonetic Classification In the phonetic classification ex-
periments, the system classified a token extracted from a phonetic
transcription that had been aligned with the speech waveform.
Since there was no detection involved in these experiments only
substitution errors were possible.

In the first set of experiments, we compared results based on
Corpus I, using different classifiers and different input represe-
nations. As has been reported previously, the baseline speaker-
independent classification performance of SUMMIT on the testing
data was 70% [8]. We also experimented with representations
based on the spectral outputs described previously. Four exper-
iments were performed using 1) the synchrony outputs, 2) the
mean-rate outputs, 3) the synchrony and mean-rate outputs and
4) the synchrony and mean-rate outputs and segment duration.
The results of all experiments have been summarized in Table 3.
Finally, we used the same set of acoustic attributes used in the
SUMMIT system. The MLP classifier yields a performance of 74%.

These results collectively suggest that the MLP classifier pro-
duces results favorable to those in the current SUMMIT system.
Furthermore, the use of the automatically determined acoustic
attributes can lead to a better classification performance.

Although the sx sentences were designed to be phonetically
balanced, the 1,750 sentences in Corpus I are not distinct. In
the second set of experiments, we evaluated the MLP classifier
on Corpus II, which include both the sx and si sentences.? As
shown in Table 3, the classifier achieves 76%.

Connections All the networks used as described in Table 3
have only 1 hidden layer. They have a different number of input
units, depending on the acoustic representations. For example,
when both the synchrony envelopes and mean-rate response are
used, the network has a total of 240 input units. The networks
may also have a different number of hidden units, resulting in a
different number of connections. As we can see from Figure 3, the
attributes have the additional advantage over the raw auditory
outputs in that the number of connections needed is decreased.
In other words, training time, classification time, and storage
requirements can all be reduced.

Boundary Classification We have evaluated the bound-
ary classifier using the training and testing data in Corpus I
By using 32 hidden units, the network can classify 87% of the
boundaries in the test set correctly.

2All the si sentences in TIMIT are distinct.
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| [Classifier| Representation [Correct | Connections |

I summrr attributes 0% -

I MLP SYN 65% 10,000
I MLP MR 68% 10,000
1| MLP SYN+MR 70% 35,000
I MLP {SYN+MR+DUR| 72% 40,000
I MLP attributes 4% 15,000
I MLP attributes 76% 30,000

Table 3: Phonetic classification comparing the baseline and MLP clas-
sifers, and acoustic representations. The representations are the 82
acoustic attributes, the synchrony envelopes (SYN), mean-rate response
(MR), and duration (DUR). Also shown are the number of connections
in the networks.

{ Corpus | Classifer Segment [ Correct |

1 Baseline | Binary Hierarchy | 47%
1 MLP | Binary Hierarchy | 50%
I MLP |Boundary Pruning | 55%
I MLP |Boundary Pruning| 56%

Table 4: Phonetic recognition results using binary hierarchy (den-
drogram), and boundary pruning. No duration, bigram, or trigram
statistics have been used. Errors include substitutions, deletions, and
insertions.

Phonetic Recognition The results of the phonetic recog-
nition experiments are shown in Table 4. No duration, bigram,
or trigram statistics have been used. The baseline performance of
the current SUMMIT system on Corpus I is 47%, including substi-
tution, deletion, and insertion errors. When the MLP was used
in place of the classifier in the current SUMMIT system, the per-
formance improved to 50%. When the MLP was used with the
boundary pruning technique discussed in the previous section,
the segments were further pruned based on conservative duration
constraints. As a result, they contained about twice as many re-
gions, on average, as the binary hierarchy. As can be seen from
Table 4, the performance improved to 55%. Finally, by using
the network trained and tested on Corpus II, the performance
improved to 56%.

DISCUSSION

Equation 2 shows one way of estimating the segment prob-
ability, p(s;). More recently, we have been investigating other
procedures. One alternative is to utilize both the internal and
external boundaries. Thus Equation 2 can be modified to:

p(s;) = p(by, b1, b2, .., b, br) (3)
= p(b)p(by}p(ba)...p(bx ) p(br)

where by and b, stand for the boundaries at the left and right end
points of a segment, s;, as shown in Figure 2. When p(b;) and
p(b,) approach 1, Equation 2 approximates Equation 3. Con-
ceptually, Equation 3 should result in a better estimate of p(s;).
We have been conducting experiments in this direction, and are
hopeful that we can report more results in the future.
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bl b1 b2.. bK br

Figure 2: Schematic diagram for alternative way of estimating segment
probability, p(si). See text.

In summary, we have discussed issues in adopting a segmental
framework. Although it offers us more flexibility than is afforded
by a frame-based approach, its computational requirements can
be prohibitively large. We have discussed several pruning tech-
niques, and have shown that there is a continuum in computa-
tional requirement. We have also discussed using the MLP to
perform context-independent phonetic classification and detec-
tion, using different input representations. We have shown that
the MLP yields results favorable to the classifier in the current
SUMMIT system, and that the use of acoustic attributes results in
improved performance and reduced computations. Future work
includes the use of context-dependent models for phonetic and
boundary classification, utilization of other phonological units,
and extension to recognition of continuous speech.
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