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1 Abstract

This paper addresses the problem of automatic speech recognition
under Lombard and noise conditions. The main contributions in-
clude the statistical analysis of vocal tract and speech parameters
under Lombard effect, and the formulation of a new speech recog-
nition system which employs adaptive noise suppression and Lom-
bard effect compensation front-end processors. The effects on for-
mant location, bandwidth, and mel-cepstral parameters from noise
and Lombard effect are presented. These parameters vary greatly,
with significant variations across all phonemes for spectral tilt. Ap-
proximately half of all mel-cepstral parameters result in statisti-
cally significant variation from neutral. The significance of pa-
rameter variation between noisefree and noisy Lombard conditions
shifts, suggesting the need for an alternate compensation for noise-
free and noisy Lombard speech. A new recognition algorithm em-
ploying nojse adaptive boundary detection, noise suppression, and
voiced/unvoiced Lombard compensation is presented. Observed shifts
in mean cepstral values from neutral can be modeled using an expo-
nential tilt, as suggested by Chen [3], but that the exponential form
appears to differ for each phoneme class. A new Lombard effect
compensator is formulated which allows varying degrees of compen-
sation to be placed on voiced/unvoiced speech sections, Preliminary
recognition results suggest that separate compensation of voiced and
unvoiced speech sections improves recognition performance by as
much as 10% over no compensation.

2 Introduction

Current speech recognition systems generally degrade in perfor-
mance when trained in neutral noise free conditions, and tested in
noisy stressful environments. This is because previous recognition
studies have largely been directed at issues which reduce speaker re-
strictions, increase vocabulary size, and transcend the boundaries of
isolated to continuous speech. One reason for the limited progress
is that past approaches such as dynamic time warping or hidden
Markov modeling (HMM) have largely been applied in noise free
tranquil environments. One approach to the recogrition in noise
problem might be to explore the enumerable speech parameteriza-
tion methods reported in the literature to determine which set of
parameters are best suited for an existing recognizer. Such meth-
ods cannot predict performance under varying environmental con-
ditions. For example, noise characteristics vary greatly in settings
where speech recognition is needed (e.g., pilots in aircraft cock-
pits, wheelchair control for the disabled, factory use for assembly
lines). If robust recognition under such diverse environments is to
be achieved, varying speaker and environmental conditions must be
incorporated in the algorithm formulation.
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The problem considered is the formulation of a robust speaker
dependent, recognizer which addresses the problems of changing in-
put noise levels, and varying speech characteristics under such noise.
There are three factors which affect speech entering the recognition
system. First, background noise will have a degrading effect on the
speech signal. Second, since the speaker is able to hear the back-
ground noise, he may alter his speech characteristics in an effort to
increase communication efficiency over the noisy medium (i.e., the
Lombard effect [15]). Lastly, the performance of a secondary task
may also affect characteristics of an operator’s speech production
system. The effects of task stress on recognition performance will
not be considered at this time.

2.1 Front-End Processing for Recognition

In the past, the direction we have taken for speech recognition in
noise has been to develop enhancement and stress compensation
preprocessing front-ends [8, 9, 10, 11]. These preprocessors take
advantage of past recognition techniques formulated in noise free
tranquil environments by producing speech or recognition features
less sensitive to varying factors such as stress and noise. The effect
of noise and Lombard effect on recognition rates have been consid-
ered in previous studies. For example, when additive noise is in-
troduced, average recognition rates for a discrete observation HMM
decrease by 39% for neutral speech, 65% for Lombard speech [9].
Constrained iterative enhancement algorithms [10] which function
as front-ends can increase recognition by 4+34% for neutral speech,
+18% for stressed speech. These rates show that noise suppression
can improve recognition to acceptable levels for neutral speech, but
cannot eliminate all errors found in changing voice characteristics
under the Lombard effect. If stress compensation algorithms (Lom-
bard effect was one), based on formant location, bandwidth, and
intensity, are combined with enhancement preprocessing, Lombard
speech recognition increases by +42%. Generally speaking, enhance-
ment preprocessing resulted in good performance requiring little a
priortinformation. Stress compensation however, required extensive
a priori knowledge. The stress compensators revealed that if average
formant location and bandwidth are compensated, two-thirds of the
errors resulting from Lombard effect can be eliminated. The next
step therefore, is to perform this in a manner which is automatic. In
this paper we consider compensation of mel-cepstral parameters in
voiced and unvoiced sections prior to recognition. First, we summa-
rize some statistical results of acoustic-phonetic analysis of speech
under Lombard effect.

2.2 Vocal Tract and the Lombard Effect

To understand how stress effects speech production, a speech under
stress data base was collected (32 speakers were employed to gen-
erate in excess of 16,000 utterances) [9]. A four year study which
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Phoneme Average Formant Frequencies | Average Formant Bandwidths
Style | F1 F2 JZi F4 B1 B2 B3 B4
Yy Neutral 411 1970 2607 3368 52 222 496 366
Lombard 412 2006 « | 2644 » 3376 73 % 139 = 250 = 185 +
7 Neutral 296 1668 2417 3329 160 147 408 442
Lormbard || 361 % | 1710 % | 2473 & [ 3220 « 359 « 156 279 » 251 »
£ Neutral 573 1260 2576 3239 136 233 788 849
Lombard || 675 « | 1509 » 2638 3282 68 * 102 474 « 476 *
ol Nentral 355 955 2422 3314 225 317 623 552
Lombard 526 « 959 2344 + | 3236 » 122 % 209 443 « 287 *
N Neutral ‘241 1480 2515 3387 163 081 651 702
Lombard || 309 % | 1087 = | 2177 » | 3033 » 497 % 984 359 581
R Neutral 457 1380 1824 187 99 467 562 318
Lombard 447 1494 % | 2000 » 3158 95 190 333 * 115 %

Table 1: Average formant frequency and formant bandwidth for six phonemes
under neutral and Lombard effect (x indicates a statistically significant variation).
consisted of analysis of pitch, glottal source, duration, intensity, and
vocal-tract shaping (approximately 200 speech parameters) gave in-
sight into how talkers’ vary their production systems [7, 9]. The
significance of the variation of each parameter in mean, variance
and distribution was considered. Of interest here, are resuits from
Lombard effect. To illustrate how vocal tract characteristics vary
under Lombard effect, we summarize average formant locations and
bandwidths in Table 1. The results show that when a talker experi-
ences Lombard effect, the following generally occur, 1) average band-
widths decrease for most phonemes, ii) formant locations for vowels
increase, iii) first formant locations increase for most phonemes, iv)
formant amplitudes increase, giving rise to a shift in spectral energy
from low to high frequency (this was especially true for sonorants).
Next, we identify how speech parameters used for recognition are

affected by noise.

2.3 Speech Parameters and Lombard Effect

An analysis was performed over the same speech under stress data
base to determine statistical variation of linear predictive codirg
(LPC) parameters and mel-frequency Cepstral coefficients. Anal-
ysis of mean, variance, and distribution of the first 10 PARCOR
coefficients and 9 mel-Cepstral coefficients was performed. Analysis
was conducted on four data sets; i) noisefree neutral, ii) noisefree
Lombard, iii) noisy neutral, and iv) noisy Lombard (Lombard ef-
fect speech was simulated by having talkers’ speak with 85dB SPL
noise played through headphones). Table 2 summarizes average
mel-cepstral coefficients under the four conditions. Results show
that approximately half of all average mel-cepstral parameters re-
sulted in statistically significant shifts from neutral (as measured by
pairwise Student T tests). When 6dB of additive white Gaussian
noise is introduced, the first mel-cepstral coeflicient is always signif-
icantly different from neutral. This confirms the change in spectral
tilt between neutral and Lombard effect. An important point here,
is that mel-cepstral parameters resulting in significant shifts under
noise free settings, may not vary significantly when noise is intro-
duced. This implies that different stress compensation must be used
if no noise suppression front-end is used. Another important result
is that average mel-cepstral parameters behave differently between
phonemes.

3 HMM Recognition Formulation

Figure 1 illustrates a block diagram of a new HMM-based recogni-
tion system. The system employs a front-end noise adaptive word-
boundary detector which provides initial boundary information to
an adaptive spectral subtraction based noise suppression task. Once
noise suppression has been performed, the boundary detector is
applied a second time to obtain better estimates for subsequent
HMM recognition. During this second application, speech activ-
ity is also partitioned into voiced/transition/unvoiced sections for
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Phoneme Average mel-Cepstral Values
Style [#] [¢] %] [] [¢] [%3 Cc7 [ [#]
Y Neutral 25, -8.5 -5.3 1.8 0.9 -0.8 -0.9 -0.2 -0.1
Lombard 26. -10. * -5.3 2.0 0.5 0.2 % | -0.1 % 0.1 -0.2
I Neutral 5.2 -12, 0.9 0.2 -1.§ 1.3 -0.5 -1.2 -0.2
Lombard 3.6 =11. 1.4 1.6 % | <24 % 1.0 -0.4 -0.8 ~0.1
E Neutral -2.8 -6.1 1.5 -2.0 -8.1 0.6 -0.1 ~0.8 -0.2
Lombard -4.5 -6.0 2.7 4.5 * -2.3 1.3 x -0.5 -0.5 0.0 %
ol  Neutral 1.2 -0.5 -5.5 13 -0.2 -0.8 -0.9 «0.6 -0.1
Lombard 5.1 % -0.9 -5.4 24 % | -l4 -1.2 -1.1 -0.8 O.1 %
N Neutral 17. -2.8 -2.8 0.5 -0.0 -0.1 -0.2 -0.1 -0.1
Lombard 12. % | 8.1 % { -5.0% | -L.1x ] 0.7 % 124 | 0.2+ | -0.3 % 0.3 «
R Neutral -4.8 -7.6 3.2 -0.8 -2.9 -3.4 -0.8 -0.3 ~0.8
Lombard -2.4 -7.7 14x | -23%; -3.8 | -20x [ -04 -0.8 -0.3
Average mel-Cepstral Values in Noise
Iy Neutral 12. -2.8 -2.8 -0.5 0.8 0.7 0.1 0.0 0.1
Lombard 10, * -3.1 -3.7 * -0.4 0.8 0.6 0.2 0.1 -0.1
I Neutral 11, -8.2 -0.1 0.1 -0.2 0.1 -0.7 0.0 0.1
Lombard 6.2 -9.0 16% | ~09% [-12% | 1.2% [ -04«]-04x+ 0.0
E Neutral 6.9 -5.8 1.5 -0.6 -0.9 0.1 -0.4 -0.1 -0.0
Lombard 0.7 + -5.1 3.3 % | ~21 % -0.6 1.3 * -0.6 -0.2 0.1
oV Neutral 7.0 -3.4 -1.3 0.9 04 0.0 -0.2 0.0 0.0
Lombard 0.9 * -3.1 -1.0 L7% | -0.1 » 0.0 -0.0 w a.1 0.0
N Neutral 8.8 0.3 -0.7 -0.3 0.1 0.1 -0.1 0.1 -0.0
Lombard 5.5 % -0.2 -1.5 -0.1 -0.2 0.2 -0.2 0.2 0.1 «
R Neutral 7.2 -5.5 -0.6 0.1 1.1 -0.1 -0.8 0.2 0.1
Lombard 3.7 % -4.9 -0.7 0.3 0.8 Q.0 ~0.3 % 0.1 0.0

Table 2: Average mel-frequency Cepstral parameters for six phonerﬁes under neu-
tral and Lombard effect, with and without 6dB additive White Gaussian noise (*
indicates a statistically significant variation).
Lombard stress compensation. The Lombard effect compensation
is performed on estimated mel-frequency cepstral coefficients. Once
noise suppression and stress compensation has been performed, a
vector quantizer is used to compress input data prior to the HMM
recognition task.

3.1 Noise Adaptive Boundary Detection

A noise adaptive boundary detector was formulated to improve per-
formance of noise suppression and Lombard effect compensation.
The detection method is similar in principle to many energy thresh-
olding methods such as the hybrid technique proposed by Lamel,
Rabiner, Rosenberg, and Wilpon [13]. The present approach is dif-
ferent in the sense that all thresholds (in both time and duration},
adapt to varying background noise levels. Adaptive thresholds are
needed, since it has been shown that word duration and intensity
vary significantly under Lombard effect [9]. For example, word du-
ration increases by 20%, and word intensity by 8% under Lombard
effect. Of particular concern is that vowels and semivowels show
significant increases in duration, 24% and 63% respectively. An ex-
ample of boundary detector performance is shown in Figure 2. An
isolated word, corrupted with additive noise is shown (a). Nor-
malized log frame energy b is used in the detection process. The
process determines begin and endpoints (¢), and classifies them into
primary and secondary depending on several a priori conditions (i.e.,
word duration limits, stop gap limits, etc). Once speech enhance-
ment has been performed, the boundary detector is applied again.
Primary and secondary endpoints are estimated and a subsequent
voiced/transition/unvoiced detection procedure performed, (d).

3.2 Noise Suppression Prefiltering

A noise suppression spectral estimator is obtained by subtracting
an estimated noise bias found during non-speech activity. The noise
power spectrum is determined from data outside word boundary
values. If we assume the speech signal is short-time stationary, cor-
rupted with noise which is additive and uncorrelated with speech,
the resulting spectral subtraction relation is,

[uti)] = IYulio)l? - BIDu(w)P) 0
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A half-wave rectification step is performed to eliminate errors in over
estimating noise bias. Magnitude averaging as proposed by Boll [2]
is applied to reduce residual tone artifacts. The resulting estimator,
employing phase information from the original noisy speech O,(jw)
is shown below.

1
) ' 1 M, 2
R {m 2y, S = B [Pt }eﬂ‘%‘f‘”
A soft decision is also made between speech and non-speech activ-
ity using the estimated boundary values from the previous task.
This allows for additional noise suppression during periods of si-
lence which improves the boundary detector’s ability to distinguish
voiced /transitional/unvoiced speech activity.

3.3 Parameter Estimation

The parameter representation used in this study are mel-frequency
cepstral coefficients estimated from enrhanced speech. The coef-
ficients are derived in a manner similar to those used in Davis
and Mermelstein [4]. Noise suppressed speech is windowed using
a 256 sample Hamming window, with subsequent frames overlap-
ping by 128 samples. Nineteen triangular bandpass filters were
formed, centered at the following mel-scale frequencies, m; = 2595.
logyg [1 + 7& . The output log energy for each is obtained as X;,j =
1,2,...,19, and ten mel-cepstral parameters ¢, are computed as the
symmetric cosine transform of these energy values.

19
Cn = Zchos [nf <j— %)] ,n=2012...,9.

L. 9
7=1
3.4 mel-Cepstral Compensation

3)

For mel-cepstral compensation, it is assumed that each coefficient
is contaminated by an additive deterministic stress component. In
the study by Chen [3], it is assumed that the stress effect remains
unchanged within a word interval, resulting in a constant stress
vector for an entire word. From our analysis on formant location,
bandwidth, PARCOR coefficients, and mel-cepstral coefficients over
phonemes, speech parameters vary differently over an entire word
under the Lombard condition. Therefore, the present stress com-
pensator asserts that each word will have as many stress vectors as
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Word: Histogram

Figure 2: Example of the noise adaptive boundary detection process.

phoneme classes within the word. The compensator consists of two
phases, training and in-line recognition use. For training, a token
under simulated Lombard conditions is compared to training tokens
used for the HMM recognizer. With the aid of the adaptive bound-
ary detector, all tokens are split into mel-cepstral sequences within
phoneme classes. For the present study, we consider only voiced,
transitional, and unvoiced phoneme classes. Once the mel-cepstral
parameters are split into classes, sample averages are calculated,
and Lombard effect difference vectors obtained. During recogni-
tion, Lombard effect compensation vectors for each class are used
on boundary labeled test tokens. Therefore, given a test and train-
ing token for each HMM, the following steps are performed on the
test token, i) compute one stress vector for each phoneme class,
ii) smooth the stress vectors by fitting an exponential function to
the vector as proposed by Chen [3], iii) we subtract the exponen-
tial function from the cepstral vectors of the test token across the
appropriate phoneme class, finally iv) we use the compensated test
tokens as the observation sequence for the HMM recognizer.

3.5 Vector Quantization

The implementation of the HMM recognizer in section 3.6 requires
the model inputs to be sequences of discrete symbols chosen from
a finite alphabet. These discrete symbols are obtained via vec-
tor quantization of the compensated mel-cepstral coefficients. A
64 state vector quantizer was used. Training was performed using a
binary-split procedure similar to the Lloyd algorithm (see Gray [6]).
The distance measure used is Euclidean based, with the first mel-
cepstral coefficient used to normalize overall gain. The resulting
distance equation is given below,

where &, is the reference vector of mel-cepstral coefficients (e.g., from
the VQ codebook), and & is the test coefficient vector.
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Figure 3: A state diagram for a 5-state Markov model.

3.6 HMM Recognizer

The theory of hidden Markov models and their application to speech
recognition have been reported in a number of papers [12, 14, 16]. In
this study, a speaker dependent, isolated word, discrete-observation
hidden Markov model recognizer was formulated. Figure 3 illus-
trates the type of Markov model used. A separate HMM is ob-
tained for each word. Each HMM is a five state left-to-right model,
beginning in state 1. For training, each model was initiated with es-
sentially random choices for non-zero elements and then iteratively
adjusted to increase P(&|M), the probability of the observation se-
quence & having been generated by model M. The training algo-
rithm was based on the Baum-Welch forward-backward reestimation
algorithm {1]. For recognition, the probability P{(§|M) is computed
‘using the following relations. The recursion relation for a,q1(Jf) is
due to Ferguson [5].

P(eM) = Z Pixbix(q)l)aixb"'bil\'(q’/\")ail\‘._liIr (5)
110920l
N

o1(f) = [Zat(i)%} bi(@egr) t=1,2,...,K—1. (6)
=1
N

P(®IM) = 3 ax(j). (7
J=1

3.7 Recognition Evaluation

Recognition evaluation was performed using a dictionary of twenty
highly confusable words from our previous speech under stress data
base. These words are also used by Texas Instruments and Lincoln
Labs to evaluate recognition systems. Subsets include {go, oh, no},
{six, fix}, and {wide, white}. From the analysis of vocal tract and
mel-cepstral parameters, it was shown that Lombard effect causes
parameters to behave differently between phoneme classes. At this
point, we consider different compensation Between voiced and un-
voiced speech sections. Fourteen examples of each word, for each
speaker, were used in recognition evaluation, six neutral examples
for training, six neutral examples for recognition, and two Lombard
examples. All tests were fully open employing a neutral trained
HMM system. Preliminary recognition results are as follows; 1) 88%
for noise free neutral speech, ii) 65% for noise free Lombard speech,
ili) 70% with compensation for only voiced sections, iv) 70% with
compensation of only unvoiced sections, and v) with compensation
of voiced and unvoiced sections, recognition increased to 75%. For
no compersation, voiced only, and unvoiced only compensation, 50%
of errors were caused by confusable word-pairs. For combined voiced
and unvoiced compensation, only 20% of the errors were due to con-
fusable pairs. This implies that if a larger training set were used for
HMM training, recognition rates may increase even further. These
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4 Conclusions

This paper has investigated the effect of Lombard condition on vo-
cal tract parameters (formant location and bandwidth) and mel-
cepstral parameters. We have seen that mel-cepstral parameters
vary greatly under Lombard condition, and that spectral tilt varies
significantly across all phonemes. A statistical analysis of these pa-
rameters in terms of mean, variance and distribution was performed.
Approximately half the mel-cepstral parameters resulted in signif-
icant variations from neutral. Also, parameters which vary signifi-
cantly under noisefree Lombard condition, may not when both neu-
tral and Lombard speech are corrupted by additive noise. Observed
shifts in mean cepstral values from neutral can be modeled using an
exponential tilt, as outlined by Chen {3], but that the exponential
form appears to be different for each phoneme class. Finally, a new
recognition algorithm employing noise adaptive boundary detection,
noise suppression, and voiced/unvoiced Lombard effect compensa-
tion was presented. Preliminary recognition results suggest separate
compensation of voiced/unvoiced speech sections give improved per-
formance over no compensation.

“This work sponsored in part by grants from tlie National Science Foundation
Grant No. IRI-9010536, and the I.B.M. Corp. Grant No. N-UN-225-00.
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