4th International Conference on Spoken Language Processing

Philadelphia, PA, USA
October 3-6, 1996

Key-Phrase Detection and Verification for Flexible Speech Understanding

Tatsuya Kawahara, Chin-Hui Lee, Biing-Hwang Juang

Bell Laboratories, Murray Hill, NJ, USA

A novel framework of robust speech understanding is presented. It is based on a detection and verification strategy. It extracts the semantically significant parts and rejects the irrelevant parts rather than decoding the whole utterances. There are two key features in our strategy. Firstly, discriminative verifier is integrated to suppress false alarms. It uses anti-subword models specifically trained to verify the recognition results. The second feature is the use of a keyphrase network as the detection unit. It embeds stochastic constraint of keyword and keyphrase connections to improve the coverage and detection rates. The automatic generation of the keyphrase network structure is also addressed. This top-down variable-length language model can be trained with a small corpus and ported to different tasks. This property coupled with the vocabulary-independent detector and verifier enhances the portability of our framework.

Full Paper

Bibliographic reference.  Kawahara, Tatsuya / Lee, Chin-Hui / Juang, Biing-Hwang (1996): "Key-phrase detection and verification for flexible speech understanding", In ICSLP-1996, 861-864.