4th International Conference on Spoken Language Processing

Philadelphia, PA, USA
October 3-6, 1996

A Compact Model for Speaker-Adaptive Training

Tasos Anastasakos (2), John McDonough (1), Richard Schwartz (1), John Makhoul (1)

(1) BBN Systems and Technologies, Cambridge, MA, USA
(2) Northeastern University, Boston, MA, USA

In this work we formulate a novel approach to estimating the parameters of continuous density HMMs for speaker-independent (SI) continuous speech recognition. It is motivated by the fact that variability in SI acoustic models is attributed to both phonetic variation and variation among the speakers of the training population, that is independent of the information content of the speech signal. These two variation sources are decoupled and the proposed method jointly annihilates the inter-speaker variation and estimates the HMM parameters of the SI acoustic models. We compare the proposed training algorithm to the common SI training paradigm within the context of supervised adaptation. We show that the proposed acoustic models are more efficiently adapted to the test speakers, thus achieving significant overall word error rate reductions of 19% and 25% for 20K and 05K vocabulary tasks respectively.

Full Paper

Bibliographic reference.  Anastasakos, Tasos / McDonough, John / Schwartz, Richard / Makhoul, John (1996): "A compact model for speaker-adaptive training", In ICSLP-1996, 1137-1140.