4th International Conference on Spoken Language Processing

Philadelphia, PA, USA
October 3-6, 1996

Preprocessing and Neural Classification of English Stop Consonants [b,d,g,p,t,k]

Anna Esposito, C. E. Ezin, M. Ceccarelli

International Institute for Advanced Scientific Studies (IIASS), Vietri Sul Mare (SA), Italy

Neural networks are accepted as powerful learning tools in pattern recognition in which they proved their performance. Nevertheless, many problems like phoneme classifies lion with multi-speaker continuous speech database are hard even for Neural Networks. Our aim is to propose an Artificial Neural Network architecture that detects acoustic features in speech signals and classifies them correctly. We reached this goal with English stop consonants [b, d, g, p, t, k] extracted from the general multi-speaker database (TTMIT) by modifying some parameter values m the preprocessing algorithm and by using a modified TDNN ( Time Delay Neural Network) architecture. Our net performed a good classification giving as testing recognition percentage the following results; 92.9 for [b], 91.8 for [d], 92.4 for [g], 80.3 for [p], 90.2 for [t], 94.2 for [k].

Full Paper

Bibliographic reference.  Esposito, Anna / Ezin, C. E. / Ceccarelli, M. (1996): "Preprocessing and neural classification of English stop consonants [b,d,g,p,t,k]", In ICSLP-1996, 1249-1252.