INTERSPEECH 2012

We propose a new method to incorporate statistical priors on the solution of the nonnegative matrix factorization (NMF) for singlechannel source separation (SCSS) applications. The Gaussian mixture model (GMM) is used as a lognormalized gain prior model for the NMF solution. The normalization makes the prior models energy independent. In NMF based SCSS, NMF is used to decompose the spectra of the observed mixed signal as a weighted linear combination of a set of trained basis vectors. In this work, the NMF decomposition weights are enforced to consider statistical prior information on the weight combination patterns that the trained basis vectors can jointly receive for each source in the observed mixed signal. The NMF solutions for the weights are encouraged to increase the log likelihood with the trained gain prior GMMs while reducing the NMF reconstruction error at the same time.
Index Terms: Nonnegative matrix factorization, singlechannel source separation, Gaussian mixture models
Bibliographic reference. Grais, Emad M. / Erdogan, Hakan (2012): "Gaussian mixture gain priors for regularized nonnegative matrix factorization in single channel source separation", In INTERSPEECH2012, 15201523.