7th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA 2011)

Florence, Italy
August 25-27, 2011

Detection of Obstructive Sleep Apnea using Speech Signal Analysis

Oren Elisha (1), A. Tarasiuk (2), Yaniv Zigel (1)

(1) Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
   (2) Sleep-Wake Disorders Unit, Soroka University Medical Center and Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Obstructive sleep apnea (OSA) is a prevalent sleep related breathing disorder associated with several anatomical abnormalities of the upper airway. Acoustic parameters of human speech are influenced by properties of the vocal tract, which includes the upper airway. We hypothesize that it is possible to differentiate OSA patients from non-OSA (healthy) subjects by analyzing potential patients' speech signals. using speaker recognition and signal processing techniques, we designed a system for classifying a given speech signal into one of the two groups. the database for this research was constructed from 92 subjects who were recorded reading a one-minute speech protocol immediately prior to a full polysomnography study; one hundred and three acoustic features were extracted from each signal; seven independent Gaussian mixture models (GMM)-based classifiers were implemented; a fusion process was designed to combine the scores of these classifiers and a validation procedure took place in order to examine the system's performance. specificity and sensitivity of 91.66% and 91.66% were achieved for the male population; and 88.89% and 85.71% were achieved for female population, respectively. such a system can be used as a tool for initial screening of potential osa patients.

Index Terms. obstructive sleep apnea, speech signal processing, speaker recognition.

Full Paper (reprinted with permission from Firenze University Press)

Bibliographic reference.  Elisha, Oren / Tarasiuk, A. / Zigel, Yaniv (2011): "Detection of obstructive sleep apnea using speech signal analysis", In MAVEBA-2011, 13-16.