AN UNDERSTANDING STRATEGY BASED ON PLAUSIBILITY SCORE IN RECOGNITION HISTORY USING CSR CONFIDENCE MEASURE

Toshihiko ITOH†, Atsuhiko KAI‡, Tatsuhiro KONISHI‡ and Yukihiro ITOH‡

† Hokkaidou University
Kita 8 Nishi 5, Sapporo 060-0808, Japan
‡ Shizuoka University
3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8011, Japan
E-mail address : t-itoh@media.eng.hokudai.ac.jp, kai@sys.eng.shizuoka.ac.jp
konishi@cs.inf.shizuoka.ac.jp, itoh@cs.inf.shizuoka.ac.jp

ABSTRACT

Although car-navigation systems attract attention as one of spoken dialogue interfaces, recognition errors due to the influence of natural speech and surrounding noise may prevent a smooth dialogue and disappoint the user. Thus, this research aims at the construction of a dialogue system which can achieve a smooth dialogue and a high degree of user satisfaction. Our system performs language understanding and response generation by using the confidence measure(CM) based on continuous speech recognizer(CSR) and the recognition history. This paper shows the spoken language understanding technique in the dialogue system. The CM, together with the speech type and the recognition history, is used for generating an integrated score. The system realizes a spoken language understanding which is more plausible for a given dialogue. As the result of evaluation experiment, it was shown that our system is more efficient (more than 15%) than a language understanding technique which simply gives priority to the higher rank hypothesis of a speech recognition result (n-best).

1. INTRODUCTION

While some spoken dialogue systems have been developed as practical applications for a car-navigation system[6] or a robot, their usability is undermined by such problems as inability to recognize spontaneous speech, and difficulties in dealing with spoken corrections. Those problems prevent a smooth dialogue and lead to repetitive input for correcting recognition errors, which disappoints the user. The speech miss-recognition is not completely avoided in existing technology, and various research concerning this problem is in progress[1, 2, 3, 4].

We empirically know that there is almost always a correct result in n-best recognition results. Moreover the dialogue is usually coherent and each user’s utterance is related with others. Therefore we propose the understanding system which presume most likely interpretation result using not only the latest n-best recognition results but also all the previous n-best recognition results in a recognition history. The most likely interpretation result is determined using calculated word scores and class scores based on the confidence measure(CM) from continuous speech recognizer(CSR). There are some researches for dialogue management using the confidence measure[5, 7], but there is little research for understanding technique using the confidence measure and recognition history.

Thus, this research aims at the construction of a dialogue system which can achieve a smooth dialogue and a high degree of user satisfaction by performing language understanding and response generation using the confidence measure based on continuous speech recognizer and the recognition history.

2. TASK AND SPEECH TYPE

We assume a dialogue task which simulates voice control of a car navigation system, where one should perform landmark setting by entering several landmark names along a driving route.

Figure 1 shows user’s utterance pattern. The landmark names involve names of interchanges, stations and cities. The users input landmark names (LM) to the system. The users can supplement LM with prefectures (PR) and routes (RT). PR, RT and LM constitute a tree structure as in Figure 1. The maximum number of keywords which the user can input is 3. Each category has some classes, and the number of classes is 6. The user can input 3 categories at one time or he/she can input them separately.

The speech-type in this task consists of the followings:

(1) Narrowing: The user makes input by new or adding words which have a narrowing-relation with the previous input.

(2) Correction: The user corrects the system’s recognition errors.

(3) Answer: The user answers a question from the system.

(4) Re-input: The user makes re-input in accordance with the system’s re-input request.

Figure 2 shows an example of dialogue.

3. SPOKEN LANGUAGE UNDERSTANDING PROCESS

An overview of the spoken language system for landmark setting is shown in Figure 3. The main components of the system are
speech recognizer[8], a generator of the confidence measure, a language understanding component and a response generator. Among 1,600 read speech (400 * 4 person) based on the four speech types mentioned in the previous section, the SPOJUS[8] correctly recognizes 76% of the keywords.

The speech recognizer outputs ordered n-best recognition results based on acoustic probability. The confidence measure of a word w for a given speech X is estimated as an aposteriori probability \(P(w|X) \), which is calculated from the likelihood scores of the n-best sentence hypotheses, \(P^X(w) \).

The language understanding component calculates word scores and class scores from the confidence measures and the recognition history. Then the component predicts the category of a given keyword from class scores. Finally, the component determines word sequences which has the maximum score among all the word sequences of predicted category combinations.

The calculated scores indicate the probability of whether a given keyword is uttered in the current task. This score is also used to determine a response of the system. If the user utters a narrowing utterance, the scores of the related keywords in the recognition history are increased. On the contrary if the user utters a correction utterance, the scores of the related keywords which the system predicted are decreased and the scores of other keywords are increased. The generated word scores and class scores are preserved as the recognition history.

A category understanding process calculates a category score from the class scores of the current recognition results and the recognition history. Each category score is the sum of all class scores belonging to each category.

If the category scores (PR, RT, LM) exceed a threshold, the system predicts that the user has uttered that category. Then the understanding process determines a word combination which is allowed by the acceptable category combination and has the maximum score. Of course, the interpretation results are determined in consideration of grammatical constraints and semantic constraints.

Figure 4 and 5 show the example of the language understanding process.

3.1. Calculation process of class scores

Calculation of class scores goes as follows. (1) The language understanding system judges the speech type of the user’s utterance using the relations between the recognition history and the current recognition results. (2) Narrowing and answer utterances are processed differently from correction and re-input utterances.

Table 1 shows four conditions for speech type judgement.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>utterance after re-input request</td>
<td>correction or re-input</td>
</tr>
<tr>
<td>negation involved in recognition result</td>
<td>correction or re-input</td>
</tr>
<tr>
<td>new category introduced into the dialogue</td>
<td>narrowing or answer</td>
</tr>
<tr>
<td>otherwise</td>
<td>correction or re-input</td>
</tr>
</tbody>
</table>

These conditions are heuristic and provisional conditions. The rate of correct judgements is 87.7% (narrowing and answer utterance) and 91.4% (correction and re-input utterance).

3.1.1. Class score calculation for narrowing and answer utterances

The narrowing utterances add information to the previous utterances and the positive answer utterances confirm the previous recognition. If an input of the t-th user’s turn is judged as these types, the equation (1) is applied to calculate class scores.

\[
Score_t(c) = Score_{t-1}(c) * g_{max} + Con_{f_t}(c)
\]
Score: class scores of recognition history
Conf: confidence measures of the latest recognition results
gnar: oblivion coefficient (0.0 < g
arer < 1.0)
c: class to be processed

When the user utters a narrowing utterance or a positive answer, the system can assume that the previous recognition is successful. Accordingly the class scores related to the current recognition results are added to the confidence measures of that class. Because the older the information becomes, the less trustful it becomes, the oblivion coefficient (g
arer) is introduced into the equation. The coefficient was experimentally calculated using a development set (DATA-A, mentioned in Section 4) so that understanding accuracy becomes the highest.

3.1.2. Class score calculation for correction and re-input utterances

The equation (2) for the correction and re-input utterances is fundamentally the same as the one for the narrowing and answer utterances, except that the confidence measures of the different class in the same category are reduced from the whole scores. Consequently score correction becomes easy when the system incorrectly recognizes the class of a given keyword.

\[
Score(c_A) = Score_{t-1}(c_A) \cdot g_{nar} - Conf_f(C_A) + Conf_f(c_A)
\]

Score: class scores of recognition history
Conf: confidence measures of the latest recognition results
g
arer: oblivion coefficient (0.0 < g
arer < 1.0)
c_A: class to be processed
c: class different from c_A in the same category

3.2. Calculation process of word scores

The word scores are calculated by two steps whenever a new recognition result is inputted. The first step is to check through the existing recognition history. The second step is to process the current n-best recognition results. Different strategies are employed in each step.

In the first process, the word scores are calculated based on the recognition history in consideration of the newness of a word, the contents of the previous system response, the speech type of the user’s utterance and so on. The first process involves the following five strategies.

Strategy (1) Whenever a new recognition result is received, all the existing word scores are lowered. This is because the reliability of the previous recognition becomes low, as the information becomes old.

Strategy (2) When the word “A” in the history, and the word “B” in the current results have a narrowing relation, the score of the word “A” increases.

Strategy (3) When the word “A” in the history, and the word “B” in the current results do not have a narrowing relation, the score of the word “A” is decreased.

Strategy (4) When the affirmation word is contained in the current recognition result, the score of the word contained in the previous system response is increased.

Strategy (5) When the negation word is contained in the current recognition result, the score of the word contained in the previous system response is decreased.

In the second process, the word scores in the current recognition results are calculated from the confidence measures in consideration of the order of the n-best results, the contents of the system response, the speech type of the user’s utterance, the lengths of the recognition results and so on. The second process involves the following four strategies.

Strategy (6) When the word “A” in the current recognition results, and the word “B” in the system response have a narrowing relation, the score of the word “A” is increased.

Strategy (7) If the system utters a question and the subsequent user utterance contains possible answers for the question, the relevant word scores are increased.

Strategy (8) Bonus scores based on the ranking is given to the words ranked higher in the n-best recognition results.

Strategy (9) Since longer utterances are easier to recognize, bonus scores are given based on the length of the recognized word sequence.

Those steps are applied to every pair of the words in the recognition history and the words in the current recognition results. When the current recognition results contain the word “W”, which also appears in the recognition history, the word score of “W” in the recognition history is adopted regardless of the score of “W” in the recognition results.

For example, if the strategy (2) is applied to the word “W_A”, the equation (3) for the word score calculation is as follows.

\[
Score(W_A) = Score_{t-1}(W_A) + g_2 \cdot Conf_f(W_B)
\]

Score: word scores of recognition history
Conf: confidence measures of the latest recognition results
g_2: coefficient for strategy (2) (0.0 < g_2 < 1.0)
W_A: word in the recognition history
W_B: word in the current recognition result

The coefficient g_2 is determined for each strategy using the development set (DATA-A) so that accuracy becomes the highest. Word scores are calculated using an above-mentioned strategy. The calculated word scores are saved as a new recognition history scores.

By this technique, it is expected that reliable words get higher scores, and unreliable words receive low scores. As a result, regardless of the ranking of the present n-best recognition results, priority is given to a word with the highest probability in a dialogue.

The selection of the set of strategies mentioned above are heuristic, and other strategies probably also exist. The detection of other strategies and their implementation are subjects for a future work.

4. EVALUATION

The evaluation experiment was conducted in order to compare the performance of the language understanding technique shown in the paper, and the understanding technique which gives priority to the higher-rank candidate of n-best speech recognition results.

Two systems were prepared for the experiment. One is a spoken language understanding system (SYS-A) which gives top priority to the higher-rank candidate of the newest n-best recognition results, searches the recognition history for words related to the candidate, and output an understanding result. The other is a language understanding system (SYS-B) using the language understanding technique shown in this paper. The two systems have the same components except their language understanding systems.
First, we prepared 14 sentences about “Hamamatsu-nishi interchange”. We asked the 5 subjects to utter each prepared sentence 3 times. Using the prepared sentences and outputed recognition results for each of them, we created 3,909 imitation dialogues for the development set (DATA-A), which are possible (natural) sequences of utterances (U1-S1-U2). All the weights required for score equations were calculated using these dialogues so that the rate of the correct understanding became the highest.

Then we asked other 10 subjects to utter the 14 sentences 3 times. We made 38,160 imitation dialogues for an evaluation set (DATA-B) from the 14 sentences and the outputed recognition results in the same way as DATA-A. Since the recognition rate of DATA-B was too much good, the noise of a car was mixed in speech data and recognition rate was lowered. We also made 52,740 imitation dialogues (DATA-C) from outputted results. The word recognition rate of each dialogue (DATA-A, DATA-B and DATA-C) is 80.5%, 93.1% and 78.4%, respectively.

Finally, the evaluation experiment using SYS-B was conducted. We asked the 10 subjects to set 2 landmarks for practice using SYS-B. Then they were asked to set 10 landmarks. Consequently, 361 utterances are collected as an actual dialogue set (DATA-D) in this experiment.

The performance of different systems (SYS-A & B mentioned above & SYS-C) are compared by inputting completely the same n-best recognition results into the systems. We evaluated each system based on the understanding of the second user utterances (U2) and how the system interprets the relations between the keywords in U2 and the recognition history (U1), except for the experiment using DATA-D.

Table 2 shows the accuracy of the understanding. The “Match” is the rate of correct understanding in which the system understands all the keywords in the user’s utterances completely. The “Correct” denotes the rate of correctly understood keywords.

The understanding performance of the SYS-B is better than SYS-A in both imitation dialogues and actual dialogues. The evaluation results shows that the system proposed in this paper is effective.

From detailed result, we have noticed that insertion error and deletion error have lowered the whole performance. Our technique is effective.

Table 2. Performance of correct understanding for spoken dialogue task

<table>
<thead>
<tr>
<th>Data</th>
<th>System</th>
<th>#Utterances</th>
<th>#Match(%)</th>
<th>#Keyword</th>
<th>#Correct(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA-A</td>
<td>SYS-A</td>
<td>3909</td>
<td>26249(67.8)</td>
<td>9337</td>
<td>8623(90.4)</td>
</tr>
<tr>
<td>DATA-A</td>
<td>SYS-B</td>
<td>3225(83.3)</td>
<td>8830(92.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA-B</td>
<td>SYS-A</td>
<td>25591(67.1)</td>
<td>90823(96.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA-B</td>
<td>SYS-B</td>
<td>36129(94.7)</td>
<td>91863(97.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA-B</td>
<td>SYS-C</td>
<td>37903(99.3)</td>
<td>93532(99.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA-C</td>
<td>SYS-A</td>
<td>35362(67.1)</td>
<td>112342(87.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA-C</td>
<td>SYS-B</td>
<td>43304(82.1)</td>
<td>118441(92.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA-C</td>
<td>SYS-C</td>
<td>47826(90.7)</td>
<td>119827(93.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA-D</td>
<td>SYS-A</td>
<td>52740</td>
<td>118963(92.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA-D</td>
<td>SYS-B</td>
<td>25591(67.1)</td>
<td>8830(92.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA-D</td>
<td>SYS-C</td>
<td>31587(87.3)</td>
<td>833(92.5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

result is generated from that score. From the evaluation experiment it was shown that the understanding accuracy of our technique is more than 15% higher than the language understanding technique which gives top priority to the higher-rank candidate of n-best.

As a future work, the framework of category understanding should be improved so that the whole performance of the language understanding will be raised.

6. REFERENCES