Prediction of Glottal LF Parameters using Regression Trees

Michelle Tooher, John G. McKenna

School of Computing
Dublin City University, Ireland
mtooher@computing.dcu.ie
john.mckenna@computing.dcu.ie

Abstract

The behaviour of the glottal Liljencrants-Fant (LF) parameters were studied across vowel, context, duration, stress and fundamental frequency. Using statistical analysis we attempted to account for the variation in the glottal parameters for a speaker and from the patterns observed create a model capable of predicting the parameters for a given utterance and fundamental frequency. The parameters varied, as expected, with fundamental frequency, and both prosodic and contextual information were statistically significant predictors. Regression trees were used to create models for each of the parameters and predictions of the LF parameters were calculated. The average relative percentage error of the predictions varied across parameters, and the study indicated that it is possible to make acceptable predictions of the LF parameters.

1. Introduction

Conventional approaches to prosodic modelling and manipulation in speech synthesis achieve reasonable results, but little attention is paid to the glottal source. The need for an improved understanding of the voice source and how it varies in speech has previously been expressed [1], as has the need for adequate voice source control rules in an effort to completely control prosody, fundamental frequency (F0) and voice quality in speech synthesis[2].

Studies have been reported where voice quality and the voice source are analysed in vowels within varying contexts [3], however little attention has been paid to the role of a varying F0. The work presented here attempts to predict the variation in the Liljencrants-Fant(LF) parameters of the glottal source, focusing on the effects of F0 and contextual information. It follows from a previous study in which the glottal LF parameters of a small corpus of vowels across F0 and phonetic environment were analysed [4]. From the conclusions drawn we also attempt to accurately predict the LF parameters for a vowel and specific speaker using regression trees. The information required for these predictions include vowel, F0, context, duration and whether the vowel is stressed or unstressed. The ability to predict the glottal parameters and thus the voice source for a speaker and particular utterance, effectively characterising the speaker, would address many issues in controlling prosodic manipulation and voice quality in speech synthesis. Most prosodic manipulation schemes aim to preserve the spectral envelope of the signal. We investigate whether this is a valid aim, since if the LF parameters vary with prosodic manipulation, the spectrum should ideally be altered accordingly. Whether the perceptual difference in adjusting spectra according to LF variation is significant is a question we intend to answer in subsequent studies.

The study outlined below uses statistical analysis to identify patterns in the glottal parameters taken from a single speaker corpus of news read speech. Regression is performed to identify variables that significantly influence the parameters. Finally, regression trees are applied in an attempt to accurately predict the LF parameters for a test set of vowels.

2. Method

2.1. Data

The data used is sourced from the Boston University Radio News Corpus [5]. The corpus consists of seven newscasters recorded both in the newsroom and in a speech laboratory. For the purpose of this study we used only that data recorded in the laboratory for one of the male speakers (M1B). The laboratory-recorded news stories consist of four news stories which the presenter has himself written. The stories are read in the speaker’s professional radio style. The data yielded 2818 occurrences of 17 vowels.

The speech files were automatically aligned using both the word and phoneme level transcriptions provided with the corpus, and were hand corrected. Vowels were extracted from the speech and automatically inverse filtered using a Kalman-Filter based, linear prediction technique [6]. This method of linear prediction automatically detects the location of closed-phase sections over which to perform analysis, with subsequent inverse filtering to obtain the glottal source. In cases where the above method encountered problems with inverse filtering, the problematic data was omitted.

The widely used LF model [7] of the glottal source was applied to the data, after the method described in [8], with some minor modifications.

2.2. Analysis Of Glottal Source Parameters

A previous study [4] on a small corpus of vowels in a controlled contextual and prosodic environment displayed evidence of non-linearity between the LF parameters T_D (point of maximum airflow through the glottis), T_P (point of maximum negative amplitude), and T_R (point of glottal closure) as they vary with T_0 (the pitch period). T_A (return phase) remained relatively constant as T_0 varied.

2.2.1. Statistical Analysis

The LF parameters were linearly regressed against T_0 as a first step in determining the manner of variation. As reported in the previous study [4] the values of three of the timing parameters increased with T_0, see Fig. 1, however the relationship appeared to be linear, as opposed to the non-linear trends reported in [4].
Figure 1: \(t_0 \) plotted against \(T_0 \).

\(T_0 \) remained close to constant.

A possible explanation for these differences is that the pitch ranges and number of data points differed between the two studies. The data used in this study was spoken in the speaker’s own style and hence much of the data clustered in the region of 90Hz - 150Hz (\(T_0 \) value of 0.011 - 0.0065). In [4] the data was more contrived, in that prompts were issued to the respondent and he was asked to speak at specific pitches. The data was therefore spread uniformly over the F0 ranges of 90Hz - 210Hz (\(T_0 \) value of 0.11 - 0.005). In Figure 1, it can be seen that most of the outliers in the data generally occur at the highest and lowest \(T_0 \) values.

Linear regression was performed on each of the parameters against \(T_0 \), and its effect on \(t_p, t_v, t_e, \) and \(T_0 \) was significant (see Table 1). The \(R^2 \) value for regression on \(T_0 \) was very small, but \(T_0 \) was still considered a statistically significant predictor. As expected with such \(R^2 \) values, there appeared to be a large standard deviation from the regression line in the cases of all four parameters.

Table 1: \(R^2 \) values for the parameters when regressed on \(T_0 \), vowel, context classes, duration, and stress.

<table>
<thead>
<tr>
<th></th>
<th>(t_p)</th>
<th>(t_v)</th>
<th>(t_e)</th>
<th>(T_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_0)</td>
<td>.511</td>
<td>.532</td>
<td>.630</td>
<td>.011</td>
</tr>
<tr>
<td>(T_0) & vowel</td>
<td>.521</td>
<td>.540</td>
<td>.635</td>
<td>.017</td>
</tr>
<tr>
<td>Stepwise regression</td>
<td>.568</td>
<td>.574</td>
<td>.648</td>
<td>.127</td>
</tr>
</tbody>
</table>

These observations clearly show there are phenomena other than \(T_0 \) affecting the glottal source. We performed stepwise regression on all contextual and prosodic information available. This method of regression iteratively adds and removes variables, discarding those deemed insignificant. The contextual information included the phonological features of five phones immediately preceding, and five phones following the vowel and a variable identifying the vowel itself. The prosodic information included duration, whether the vowel was stressed or unstressed (binary), \(T_0 \) and the relative position of the pitch period in the vowel.

The results of the stepwise regression showed \(T_0 \) as the most significant predictor of the glottal parameters (\(R^2 \) values as in row 1 of Table 1). The addition of other variables did improve the \(R^2 \) value of the model particularly in the case of \(T_0 \).

Due to the linear nature of the parameters with \(T_0 \) and the effects of contextual and prosodic information, regression trees were applied to the data in an effort to predict the parameters.

2.2.2. Prediction Of Parameters Using Regression Trees

GUIDE [9], a regression tree algorithm developed at the University of Wisconsin-Madison, was used for building the trees, which are piecewise multiple linear (linear or polynomial) regression models. These models are constructed by recursively partitioning the data. Models are fitted by maximum likelihood to each node, and the signs of the residuals determine whether data is split to the left or right side of the tree. The trees are pruned using the cost-complexity pruning method of CART [10], whereby an overly large tree is created and then sequentially pruned back until only the root node is left. This results in a sequence of nested subtrees. The tree is chosen by estimating the prediction mean squared error of each tree using N-fold cross validation, where N is the size of the learning sample.

All vowels were entered as categorical variables, their phonetic symbol representing a category. Context classes and stress were valued at 0 or 1. These variables and duration were used for splitting the nodes. \(T_0 \) and position were used as regressors in the models. The program was run once for each variable \(t_p, t_v, t_e, \) and \(T_0 \), yielding a regression tree and corresponding regression coefficients for each parameter. An example of a tree produced for \(t_p \) using only the vowel as a categorical variable and \(T_0 \) as a regressor is shown in Fig. 2.

Figure 2: \(t_p \) regressed on \(T_0 \), using vowel as a splitting variable. At each intermediate node, a case goes to the left child node if and only if the condition is satisfied. Number in italics beneath a terminal node is the sample \(t_p \) - mean. \(S_i \) refers to sets of vowels, eg. \(S_2 = \{ /AX/, /AXR/, /ER/, /OW/, /UH/ \} \). A full list of vowel sets may be seen in [12]. ARPAbet was used for phonetic transcriptions.

80% of the data set was used for training the regression trees and the remaining 20% was used for testing the model. The regression coefficients derived for the trees were used to predict new LF glottal parameters.

Footnotes:
1. Relative position refers to the number of the pitch period over the total number of pitch periods for a particular utterance. For example, 1/10 is the first of ten pitch periods.
The percentage relative error of each of the predictions for six experiments are outlined in Table 2 below and the regression coefficients calculated for Experiment 1 and Experiment 2 are shown in Table 3. The percentage error is calculated using (1), where N is the number of samples.

$$\text{Avg. Relative % Err.} = \frac{\sum_{i=1}^{N} \text{(actual - predicted)}/\text{actual}}{N \times 100}$$

(1)

The six experiments were

- Exp. 1: A simple regression line was calculated for all three parameters t_p, t_e, t_c. A constant line was calculated for T_0 based on the average T_0 value in the learning set.
- Exp. 2: Each parameter was regressed against T_0, yielding separate regression lines for each.
- Exp. 3: As Exp. 2, using the vowel as a splitting variable.
- Exp. 4: As Exp. 3, including position as a regressor variable.
- Exp. 5: All contextual and prosodic information was included, using T_0 and relative position as regressor variables and all others as splitting variables.
- Exp. 6: The data was regressed onto a quadratic, using T_0 as the regressor and all other information as splitting variables.

Table 2: Relative % Errors of parameter predictions (M1B).

<table>
<thead>
<tr>
<th>Exp.</th>
<th>t_p</th>
<th>t_e</th>
<th>t_c</th>
<th>T_0</th>
<th>T_e</th>
<th>T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. 1</td>
<td>60.97</td>
<td>23.65</td>
<td>19.72</td>
<td>54.10</td>
<td>60.97</td>
<td>79.79</td>
</tr>
<tr>
<td>Exp. 2</td>
<td>35.83</td>
<td>23.33</td>
<td>12.39</td>
<td>47.07</td>
<td>35.83</td>
<td>62.13</td>
</tr>
<tr>
<td>Exp. 3</td>
<td>34.99</td>
<td>22.79</td>
<td>12.16</td>
<td>47.94</td>
<td>34.99</td>
<td>61.16</td>
</tr>
<tr>
<td>Exp. 4</td>
<td>35.21</td>
<td>22.89</td>
<td>12.21</td>
<td>46.70</td>
<td>35.21</td>
<td>61.42</td>
</tr>
<tr>
<td>Exp. 5</td>
<td>34.54</td>
<td>22.65</td>
<td>12.05</td>
<td>48.22</td>
<td>34.54</td>
<td>61.63</td>
</tr>
<tr>
<td>Exp. 6</td>
<td>31.06</td>
<td>21.48</td>
<td>11.84</td>
<td>46.56</td>
<td>31.06</td>
<td>60.89</td>
</tr>
</tbody>
</table>

Table 3: Regression coefficients for Exp. 1 and Exp. 2 (M1B).

<table>
<thead>
<tr>
<th>Exp.</th>
<th>t_p, t_e, t_c</th>
<th>T_0</th>
<th>T_e</th>
<th>T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. 1</td>
<td>0.6296</td>
<td>0</td>
<td>0.0014</td>
<td>0</td>
</tr>
<tr>
<td>Exp. 2</td>
<td>0.5676</td>
<td>-0.0005</td>
<td>0.001</td>
<td>0.0010</td>
</tr>
<tr>
<td>Exp. 5</td>
<td>0.6402</td>
<td>-0.0001</td>
<td>0.001</td>
<td>0.0010</td>
</tr>
<tr>
<td>Exp. 6</td>
<td>0.6810</td>
<td>0.0010</td>
<td>0.0010</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

As an additional study we collected data from a second male speaker (M2B) in the news corpus. The data was processed in the same manner as that in Section 2.1, but hand correction was not performed on the automatic alignment. On completion of inverse filtering and fitting of the LF model, there were 1432 occurrences of the vowels.

We created regression models for the new data, using 80% of the data for learning and 20% for testing the models. The same six experiments were performed and results are detailed in Table 4.

Table 4: Relative % Errors of parameter predictions for M2B.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>t_p</th>
<th>t_e</th>
<th>t_c</th>
<th>T_0</th>
<th>T_e</th>
<th>T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. 1</td>
<td>23.71</td>
<td>23.62</td>
<td>17.67</td>
<td>97.11</td>
<td>23.71</td>
<td>79.79</td>
</tr>
<tr>
<td>Exp. 2</td>
<td>34.02</td>
<td>20.11</td>
<td>11.37</td>
<td>97.46</td>
<td>34.02</td>
<td>62.13</td>
</tr>
<tr>
<td>Exp. 3</td>
<td>32.10</td>
<td>18.95</td>
<td>11.34</td>
<td>96.81</td>
<td>32.10</td>
<td>61.16</td>
</tr>
<tr>
<td>Exp. 4</td>
<td>32.12</td>
<td>19.17</td>
<td>11.35</td>
<td>96.81</td>
<td>32.12</td>
<td>61.42</td>
</tr>
<tr>
<td>Exp. 5</td>
<td>35.72</td>
<td>24.24</td>
<td>11.74</td>
<td>97.21</td>
<td>35.72</td>
<td>61.63</td>
</tr>
<tr>
<td>Exp. 6</td>
<td>31.02</td>
<td>18.87</td>
<td>10.92</td>
<td>94.12</td>
<td>31.02</td>
<td>60.89</td>
</tr>
</tbody>
</table>

One extra set of experiments was also performed to test speaker dependence of the prediction models created for the first male speaker (M1B). The test data for M2B was applied to the regression models obtained for M1B, and results are reported in Table 5.

Table 5: Relative % Errors of parameter predictions, using the models derived for M1B and testing them with the test data from M2B.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>t_p</th>
<th>t_e</th>
<th>t_c</th>
<th>T_0</th>
<th>T_e</th>
<th>T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. 1</td>
<td>85.50</td>
<td>28.59</td>
<td>17.69</td>
<td>97.11</td>
<td>85.50</td>
<td>79.79</td>
</tr>
<tr>
<td>Exp. 2</td>
<td>48.46</td>
<td>28.02</td>
<td>15.02</td>
<td>98.84</td>
<td>48.46</td>
<td>62.13</td>
</tr>
<tr>
<td>Exp. 3</td>
<td>46.12</td>
<td>27.51</td>
<td>14.85</td>
<td>98.85</td>
<td>46.12</td>
<td>61.16</td>
</tr>
<tr>
<td>Exp. 4</td>
<td>46.27</td>
<td>27.41</td>
<td>14.84</td>
<td>98.49</td>
<td>46.27</td>
<td>61.42</td>
</tr>
<tr>
<td>Exp. 5</td>
<td>52.01</td>
<td>35.71</td>
<td>16.97</td>
<td>129.27</td>
<td>52.01</td>
<td>61.63</td>
</tr>
<tr>
<td>Exp. 6</td>
<td>39.49</td>
<td>26.37</td>
<td>14.10</td>
<td>84.50</td>
<td>39.49</td>
<td>60.89</td>
</tr>
</tbody>
</table>

3. Discussion

The relative percentage errors of the LF parameter predictions (in Table 2) are encouraging, suggesting that it is possible to obtain reasonable estimates of the LF parameters given utterance specific information and it is possible that with additional information about the utterances (eg. style, emotion) we could improve these results further. The improvement in the error across experiments is, however, quite small and it is possible that the computational effort involved by adding more information might overshadow the improvement in results.
Experiment 6 appears to contradict our conclusions with respect to how the parameters vary linearly with T_{0} (see Section 2.2.1). Although the R^2 values resulting from the linear fits to the data indicated that linear regression was capable of accounting for much of the variation in the data, the results from fitting the regression trees clearly show that a quadratic is more suited in the case of all four parameters. This supports the conclusions drawn in [4].

Figure 3, plotting the regression lines of the data parameters across T_{0} (Exp. 2), and Table 3 detailing the regression coefficients (Exp. 1, Exp. 2) show that the LF parameters do not vary uniformly with T_{0}, and so stretch-tong or contracting the glottal waveform uniformly (as in [13]) when manipulating pitch will not produce accurate timings. T_{0} remains relatively constant across T_{0}. While stretching f_{0}, t_{0}, and t_{0} may achieve satisfactory pitch manipulation results, stretching T_{0} would not reflect the true behaviour of T_{0} as seen in the data. A possible improvement on uniformly stretching the glottal cycle could be achieved by scaling each parameter separately for a given pitch, based on the regression coefficients.

The results obtained for M2B (Table 4) across experiments are generally similar to those of M1B (Table 2), except in the case of T_{0}, where there appears to be large deviations from the regression lines fitted. This could be attributed to the lack of data for this speaker (roughly half the data samples of M1B), or it is also possible there are influences we have not accounted for. We appreciate that the study presented here looks only at two speakers and we intend to analyse data from more speakers at a later date.

There is an element of speaker dependency evident, see Table 5. The prediction errors of the parameters t_{0} and t_{0}, in particular, increase by over 33% in some cases, t_{0} appears to be more predictable across the two speakers. The results imply that not only do we need to scale parameters separately when manipulating pitch, but the scaling factor might vary across speakers.

While investigating the high standard deviation in the variables from the regression line, we noticed there were generally two strands in the data (see Fig 1). These strands were evident across all vowels and in most contexts. The lack of trends in some contexts was attributed to sparsity of data.

A number of statistical tests using context, place and manner of articulation of contexts and vowel were performed in an effort to explain these patterns, but as yet an explanation has not been found. One possible direction would be to look at sound pressure level (SPL), which has been shown to have an effect on the glottal waveform [11]. These measurements are unfortunately not available for the given corpus.

4. Future Work

We intend to investigate a possible correlation with amplitude and results from this study would provide a possible insight into the effects of SPL. Addition of amplitude information to the model might also further improve the prediction capabilities. Other possible influences that we intend to investigate include the style of speaking and emotional state of the speaker. Data from more speakers, particularly females, will also be analysed at a future date.

Further testing is needed, using the regression models to manipulate speech data and test the perceptual effects after each addition of new variables by employing spectral manipulation.

5. Conclusions

We have presented a study investigating prosodic and contextual influences on the glottal parameters for a speaker; both influence the LF glottal timings and the results indicate that they are statistically significant predictors of the glottal parameters. The parameters were seen to vary differently across T_{0} suggesting that conventional approaches to manipulating the glottal waveform might be limited in their ability to truly reflect the changes in the glottal source. Regression trees were fitted to the data in an attempt to predict the glottal parameters, given prosodic and contextual information, yielding favourable results. A more sophisticated approach to glottal waveform manipulation taking into consideration the effects of vowel quality, prosody and phonetic environment holds the possibility of improving the naturalness of synthesised speech.

6. Acknowledgements

Michelle Tooher is partially funded by an Enterprise Ireland Scholarship Ref. No. BR/2001/158.

7. References