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ABSTRACT

A new integrated model for simultaneous modeling of lin-
guistic and acoustic models, and a training algorithm is pro-
posed. Usually, text-to-speech (TTS) systems based on the
hidden Markov model (HMM) consist of text analysis and
speech synthesis modules. Linguistic and acoustic model
training are performed independently using different training
data sets. Integrated model parameters were simultaneously
optimized by the proposed training algorithm. The derived al-
gorithm optimizes two model parameter sets simultaneously.
Therefore, the appropriate model is estimated because we
can directly-formulate the TTS problem in which the speech
waveform is generated from a word sequence. We conducted
objective evaluation experiments using phrasing and prosodic
models to evaluate the effectiveness of the proposed tech-
nique.

Index Terms— TTS system, hidden Markov model,
phrasing model, prosodic model

1. INTRODUCTION

Standard text-to-speech (TTS) systems consist of two ma-
jor modules: text analysis and speech synthesis modules.
Conventionally, these two modules are constructed indepen-
dently. The text analysis module is trained using text corpora.
The module includes phrasing and prosodic models. On the
other hand, the speech synthesis module is trained using a
labeled speech database. The module includes acoustic mod-
els used for speech synthesis, which are based on the hidden
Markov model (HMM). Therefore, if these two modules were
combined and trained simultaneously as a unified model, we
would expect improved overall performance of a TTS system.

In this paper, we define a new integrated model for si-
multaneous linguistic and acoustic modeling. Two model pa-
rameter sets were simultaneously optimized by the proposed
training algorithm. In this manner, we directly-formulate
the TTS problem of synthesizing a speech waveform from
a word sequence. Another advantage of the proposed ap-
proach is that hand-labeling of phrasing and prosodic events

not required for neither linguistic nor acoustic model training
because these labels are regarded as latent variables in the
model.

The remainder of this paper is organized as follows. The
linguistic model assumed in this paper is described in Sec-
tion 2. The theoretical framework for integrating linguistic
and acoustic models is described in Section 3. An algorithm
for training the integrated model is shown in Section 4. Ob-
jective evaluation results are shown in Section 5. Finally, con-
cluding remarks and future plans are presented in Section 6.

2. LINGUISTIC MODEL

Text analysis modules in TTS systems consist of several parts
(e.g., pronunciation, part-of-speech (POS) tagging, phrasing,
and prosodic models), and we call the set of those parts a “lin-
guistic model.” In this study, phrasing and prosodic models
in particular are used as the “linguistic model” in accordance
with tones and break indices “ToBI” [1].

We used two phrasing models. The first model is based on
a 7-gram model, and the second model is based on a 4-gram
POS model. Two types of pitch events are marked by the
prosodic model: pitch events associated with accented syl-
lables (pitch accents) and pitch events associated with into-
national boundaries (phrasal tones). Therefore, we used two
decision trees for the prosodic model in this paper.

3. INTEGRATION OF LINGUISTIC AND ACOUSTIC
MODELS

In this section, we define a new integrated model to optimize
linguistic and acoustic models simultaneously. First, a lin-
guistic and an acoustic model are defined. The likelihood of
the linguistic model λW , e.g., N-gram, decision tree model, is
written as P (L |W , λW ), where L and W are label sequence
and word sequence, respectively. On the other hand, the like-
lihood of the acoustic model λH is given by

P (O | L, λH) =
∑

q

P (O | q, λH) P (q | L, λH) , (1)
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where O = (o1,o2, . . . ,oT ) and q = (q1, q2, . . . , qT ) are ob-
servation vector sequence and state sequence, respectively.

An integrated model λ that directly models the observa-
tion vector sequence O for the word sequence W is derived
by combining the linguistic model λW and acoustic model λH ,
as follows:

P (O |W , λ)
=
∑

L

∑

q

P (O | q, λH) P (q | L, λH) P (L |W , λW ) , (2)

where

λ = {λH , λW } . (3)

We performed the linguistic model λW and acoustic model λH

training simultaneously to optimize all parameters of the in-
tegrated model λ. The derivation of the algorithm is shown in
the next Section. Differences between the conventional and
proposed training criteria are shown in Fig. 1 and Fig. 2, re-
spectively. In the conventional model, training data has to
be labeled by hand or an automatic labeling tool, which is
time consuming or causes labeling errors, respectively. On
the other hand, in the proposed model, the label sequence is
regarded as a latent variable and marginalized like a state se-
quence in HMM. Labeling the training data accordingly in not
necessary.

4. PARAMETER ESTIMATION FORMULAS

4.1. EM algorithm

The expectation maximization (EM) algorithm [2] was used
for training the proposed model. In the EM algorithm, the
likelihood is maximized at each iteration using an auxiliary
function called the Q-function:

Q
(
λ, λ

′)
=
∑

L

∑

q

P (q,L | O,W , λH , λW )

log
[
P
(
O | q, λ′H

)
P
(
q | L, λ′H

)
P
(
L |W , λ′W

)]
,

(4)

where λ, λ
′
, and P (q,L | O,W , λH , λW ) are the integrated

model before updating, that after updating, and posterior
probabilities of state sequence q and label L, respectively.
Posterior probabilities are calculated by Bayes’ rule:

P (q,L | O,W , λ) = P (O, q,L |W , λ)∑

L

∑

q

P (O, q,L |W , λ)

=
P (O | q, λH) P (q | L, λH) P (L |W , λW )∑

L

∑

q

P (O | q, λH) P (q | L, λH) P (L |W , λW )
. (5)

Fig. 1. Conventional model optimization

...

Fig. 2. Proposed model optimization

Increasing the value of the Q-function causes an increase
in the likelihood of the training data:

Q
(
λ, λ

′) ≥ Q (λ, λ)⇒ P
(
O | λ′

)
≥ P (O | λ) . (6)

Hence, maximization of the Q-function value at each iteration
maximizes the likelihood of the training data. The EM algo-
rithm starts with an initial model parameter λ0, and iterates
between the following two steps:

�

�

�

�
E-step : compute Q

(
λ, λ(t)

)

M-step : λ(t+1) = arg max
λ

Q
(
λ, λ(t)

)

where t denotes the number of the iteration. In this procedure,
each step increases the value of the Q-function. Therefore,
the likelihood of the training data either increases or remains
unchanged at each iteration.

In the M-step of the integrated model λ, the linguistic
model λW and the acoustic model λH were updated individ-
ually. The Q-function of the linguistic model λW is defined
as

QW

(
λ, λ

′)
=
∑

L

P (L | O,W , λ) log P
(
L |W , λ′W

)
. (7)
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The acoustic model λH was optimized by setting deriva-
tives of the Q-function to zero. As a result, the mean μi and
variance Σi of the i-th state output probability distribution
(Gaussian distribution) were estimated as:

μi =

∑

t

∑

L

γi (t,L) ot

∑

t

∑

L

γi (t,L)
(8)

and

Σi =

∑

t

∑

L

γi (t,L) (ot − μi) (ot − μi)
�

∑

t

∑

L

γi (t,L)
, (9)

respectively, where

γi (t,L) = P (qt = i,L | O,W , λ)
= P (qt = i | L,O, λ) P (L | O,W , λ) . (10)

Posterior probabilities P (qt = i | L,O,W , λ) of state qt were
computed by the forward-backward algorithm [3] using la-
bel sequence L. On the other hand, posterior probabilities
P (L | O,W , λ) of label sequence L were written as follows:

P (L | O,W , λ) = P (L |W , λ) P (O | L, λ)∑

L

P (L |W , λ) P (O | L, λ)
. (11)

4.2. N-best approximation

Direct implementation of the EM algorithm is not feasible
because the total number of possible combinations of label
sequence L is too large. Thus, the N-best hypotheses gener-
ated by the text analysis module were used in this study1. The
E-step was implemented accordingly as follows:

�

�

�

	

1 : generate N-best label sequences Li, i = 1, . . . ,N

2 : compute P (O | Li,W , λH) for each label sequences Li

3 : compute P (Li | O,W , λ) for each label sequences Li

4 : compute Q
(
λ, λ

′)

In the M-step, model parameters were updated using the N-
best label sequences. The above procedure optimizes the lin-
guistic and acoustic models simultaneously. Furthermore, a
state-sharing structure of HMM that matches the linguistic
model was constructed by a context-clustering technique [4].

1Although variational approximation is one of the methods for solving
this problem, we chose the N-best approximation because label sequence L
is strongly correlated with state sequence q.

5. EXPERIMENT

5.1. Experimental conditions

Objective evaluations were conducted on the CMU-ARCTIC
speech database to evaluate the performance of the proposed
system. Training data, testing data, and speech analysis con-
ditions are shown in Table 1. Each feature vector consisted
of spectrum and F0 parameter vectors. Each spectrum pa-
rameter vector consisted of the 0th - 39th STRAIGHT [5]
mel-cepstral coefficients, their delta coefficients, and delta-
delta coefficients. The F0 parameter vector consisted of log
F0, its delta coefficient, and delta-delta coefficient. We used
a 5-state left-to-right HMM structure with no-skip. Forty-
one phonemes including the pause were used as speech units.
Context-clustering based on a decision tree was applied to
spectrum, F0, and state duration models, individually. The
minimum description length (MDL) criterion [4] was used to
stop tree growth.

We trained linguistic models using the Boston University
Radio Speech Corpus for the conventional automatic labeling
technique. In the proposed system, these models were used
as initial linguistic models.

5.2. Evaluation

We calculated the root mean square error (RMSE) and cor-
relation coefficient (Corr) of F0 contour generation with re-
spect to original speech in the voiced portions of the data.
The RMSE and Corr are widely used to measure the accuracy
of F0 contour generation [6, 7, 8, 9]2. In this experiment, 4
systems were constructed as follows:

BASELINE: Only acoustic models were trained. The one-
best label sequence was used.

PROSODIC: Both acoustic and prosodic models were
trained simultaneously.

PHRASING: Both acoustic and phrasing models were
trained simultaneously.

PROSODIC + PHRASING: Acoustic, prosodic, and phras-
ing models were trained simultaneously.

Table 1. Experimental conditions

Database CMU-ARCTIC speech database
a female speaker SLT 1132 sentences
train : 1000 sentences
test : 132 sentences

Sampling rate 16kHz
Frame shift 5ms
Window length 25ms
Window function Blackman window

2Although subjective evaluation experiments are also required, they have
to be postponed because finding a sufficient number of native English speak-
ers was not easy.
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Fig. 3. F0 RMSE results
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Fig. 4. F0 Corr results

In the N-best approximation of simultaneous linguistic and
acoustic model training, 100-best label hypotheses were used.
About 20 days were taken to train the integrated models of the
proposed system.

Calculations of RMSE and Corr are shown in Fig. 3 and
Fig. 4, respectively. Three systems, PROSODIC, PHRAS-
ING, and PROSODIC + PHRASING, using simultaneous
training of linguistic and acoustic models achieved a smaller
RMSE and larger Corr, than those of “BASELINE.” A graph
of F0 contours is shown in Fig. 5. The F0 contour generated
by “PROSODIC” seems to exhibit a better goodness of fit
with respect to original speech than that of “BASELINE.”

6. CONCLUSION

In this paper, we defined a new integrated model in which lin-
guistic and acoustic models were combined into one model,
and all model parameters were estimated simultaneously by
the proposed training algorithm. We conducted objective
evaluation experiments using phrasing and prosodic mod-
els as linguistic models to evaluate the effectiveness of the
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Fig. 5. F0 contours

proposed system. The results demonstrate that the proposed
system achieves better F0 modeling accuracy than that of the
conventional system. Future work will include simultaneous
training of POS tagging modules and acoustic models. Sub-
jective listening tests performed by native English speakers
on a large database are also planned.
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