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Abstract 
We investigate how to assess the prosody quality of an ESL 
learner’s spoken sentence against native speaker’s natural 
recording or TTS synthesized voice. A spoken English 
utterance read by an ESL leaner is compared with the recording 
of a native speaker, or TTS voice. The corresponding F0 
contours (with voicings) and breaks are compared at the 
mapped syllable level via a DTW. The correlations between the 
prosody patterns of learner and native speaker (or TTS voice) 
of the same sentence are computed after the speech rates and F0 
distributions between speakers are equalized. Based upon 
collected native and non-native speakers’ databases and 
correlation coefficients, we use Gaussian mixtures to model 
them as continuous distributions for training a two-class (native 
vs non-native) neural net classifier. We found that classification 
accuracy between using native speaker’s and TTS reference is 
close, i.e., 91.2% vs 88.1%. To assess the prosody proficiency 
of an ESL learner with one sentence input, the prosody patterns 
of our high quality TTS is almost as effective as those of native 
speakers’ recordings, which are more expensive and 
inconvenient to collect. 
Index Terms: Nativeness, Dynamic Time Warping (DTW), 
Prosody, Gaussian mixture model, Deep Neural Network  

1. Introduction 
Learning a new language orally is always desirable when 
people have the business need or academic interests. While an 
experienced teacher plays a key role to enhance or speed up the 
learning process, there is usually a shortage of such teachers 
when the demand exceeds supply significantly. Computer 
Assisted Language Learning (CALL) �can alleviate this 
problem when a well-trained computer can actively participate 
in the language learning process as a teacher or teaching 
assistant. It can evaluate a student’s pronunciation at phonetic 
(segmental) level or prosodic (supra-segmental) level 
objectively to give him constructive feedbacks. Many of the 
Computer Aided Pronunciation Training (CAPT) systems focus 
on evaluating the segmental level information only. The supra-
segmental information over a time span (phrase or sentence) 
longer than that of the segmental information (phoneme or 
syllable), is challenging for a beginner to produce as a native 
speaker.  

To help a non-native language learner to learn the prosody 
pattern more effectively, we need to first extract prosodic 
features of a spoken utterance of the learner and objectively 
measure them against the corresponding features produced by 
authentic native speakers. The matching level of the prosody 
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patterns of the native and non-native speakers can shed light on 
how well a learner is proficient in producing native speaker-like 
prosody patterns. To evaluate a speaker’s nativeness at prosody 
level has been investigated in different ways. Based upon the 
mapped segmental features, Teixeira et al. [1] tried to improve 
the correlation between human scoring and automatic scoring 
by combining some global prosodic features. Sequential 
modeling was used in the nativeness evaluation or classification 
task, such as modelling over ToBI tone sequences by HMMs, 
bigram [2, 3] or trigram models [4]. Florian et al. proposed a 
large prosodic feature vector, annotation rules and prosody 
modelling methods (like Support Vector Regression (SVR)) [5, 
6, 7]. The task of the DN Sub-Challenge of the INTERSPEECH 
2015 Computational Paralinguistics Challenge is assessing the 
prosody of non-native English speech on a continuous scale [8]. 
It also provides the COMPARE feature set which contains 
6,373 static features as functional of low-level descriptor (LLD) 
contours. In [9], Deep Rectifier Neural Network and Gaussian 
Processes showed a better performance than the SVM baseline. 
Speaker clustering has shown improved results [10].  

 In this paper, we use measured prosodic similarity as the 
feature to evaluate the nativeness of a speaker. F0 contour and 
breaks are the two features in characterizing the prosody of a 
spoken utterance. Hermes compared three methods in 
evaluating the similarity between two pitch contours. He found 
that the Fisher’s Z transform of the correlation coefficient 
corresponded best with the auditory ratings [11]. Dynamic time 
warping can normalize the time duration difference between 
two utterances (of the same word content) [12]. In addition to 
the similarity between two pitch contours, in this paper we 
propose to measure the similarity of breaks/silences between 
two utterances. We found that the distributions of prosodic 
similarity between native speakers is distinctively different 
from the distribution between native and non-native speakers. 
The distribution of prosodic similarity measures can be well 
modelled by a continuous Gaussian mixture model (GMM).  

Prosody annotation is a complicated and demanding work. 
Unlike pronunciation annotation, annotating prosody pattern 
requires a labeler to ignore the accuracy of the pronunciation 
and to focus only on the supra-segmental information, e.g. tone 
and rhythm.  To request human experts to label prosody patterns 
in a consistent and accurate manner can be both time consuming 
and tedious [6]. Besides, even among experts, it is relatively 
difficult for them to agree what prosody patterns should be 
adopted as a golden standard. In this paper, to simplify the 
process, a deep neural network is trained to classify the prosody 
of a spoken sentence as “native” or “non-native”.  

We use the recordings of native speakers as reference for 
assessing prosody quality in our study. Additionally, we want 
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to test if the reference utterance of native speaker can be 
replaced by synthesized voice of high quality Text-To-Speech 
(TTS) [13]. If the answer is yes, sentences can be generated on 
demand for any given text without going through a tedious and 
expensive process of collecting native speakers’ utterances.  

  

 
Figure 1 shows the flow diagram of the modules of training 

and testing process used in this study. At first, we evaluate 
prosodic similarities of a number of utterance pairs from 
speakers with labels of native or non-native speakers. We then 
train GMMs for modelling the distribution of each speaker’s 
prosodic similarities to native speaker(s). The GMM 
distributions are used to construct an input vector of a DNN 
classifier for classifying whether an input similarity pattern is 
from an utterance of native or non-native speaker.  

2. Corpora 
In our task, two types of utterance pair patterns are constructed. 
The first one is native-native utterance pair, where a sentence is 
spoken by two native speakers and they are used to produce the 
native-native prosodic similarity pattern. The second one is 
native-nonnative utterance pair, where the same sentence is 
spoken by a native speaker and a non-native speaker to produce 
the native-nonnative similarity pattern. 

2.1. Native-native utterance pair  

We use part of the data from the CMU-Arctic speech databases 
to construct native-native utterance pairs [14]. In this database, 
approximately 1,200 phonetically balanced English utterances 
have been carefully recorded under studio conditions by each 
speaker. The recordings from 2 US female native speakers (slt, 
clb) and 2 US male native speakers (bdl, rms) are selected in 
our task. We use 1,125 utterances from each speaker to 
construct 6,750 utterance pairs by comparing them with each 
other. 

2.2. Native-nonnative utterance pair 

Non-native speakers are the users, who have Chinese as their 
L1, of Microsoft English learning project “mTutor” [15]. They 
use it to practice speaking English, and the sentences they read 
after were recorded by a native speaker (a female). We will use 

the recording data from 4 users, 3c89 (female, 2332 utterances), 
a01d (female, 859 utterances), 782d (male, 1288 utterances), 
9f1f (male, 1597 utterances). Altogether, we have 6,076 native-
nonnative utterance pairs.  

3. Prosodic Similarity Evaluation 
We evaluate prosodic similarity from in both F0 and Break 
patterns.  

3.1. Syllable-level DTW-based F0 similarity measure  

This method is similar to the work in [12] but with some 
differences. The framework is shown in Figure 2. We extracted 
MFCC features and used them for forced aligning an utterance 
with the corresponding word sequence. With the segmentations, 
a syllable-level dynamic time warping was performed. The 
MFCC (a multi-dimensional feature) instead of F0 (a scalar 
feature) was used for a more reliable warping result.   We then 
extracted F0 sequences by following the warped MFCC 
features. Different speakers usually have different F0 
distribution. To make extracted F0 contours of different 
speakers comparable, F0 sequences were normalized by 
subtracting the average F0 on an utterance level. Finally, the 
correlation coefficient between two equalized F0 sequences of 
utterances 1 and 2 was computed for its similarity [11] in Eq.1, 
where � is the number of voiced frames, ��� is the F0 value in 
the ��� voiced frame in utterance 1, ��	  is the average F0 of all 
voiced frames in utterance 1.  

                
��� = ∑ (������	 )∗(����	 )����
�∑ (������	 )���� ∗�∑ (����	 )����

 (1)  

3.2. Alignment-based break similarity measure 

Forced alignment provides the position and duration of break(s) 
in an utterance. We propose a method to calculate the break 
similarity of two utterances. In this method, the break similarity 
is defined as the product of break position similarity and break 
duration similarity. 

3.2.1. Break position matching 

Utterances of the same text are compared according to the 
corresponding syllable sequences. For example, the sentence 
read by speakers A and B is “You are outgoing”, we segment 
them into corresponding syllable sequences as “y.uw aa.r aw.t 
g.ow ih.ng”. Therefore, 4 bi-syllabic pairs are thus constructed, 

Figure 1 Prosodic Similarity based Nativeness Evaluation, 
NS means native speaker and AS means non-native speaker 

Figure 2 Framework of Syllable-level DTW-based 
F0 Similarity Measure 
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which are “y.uw-aa.r”, “aa.r-aw.t”, “aw.t-g.ow”, “g.ow-ih.ng”. 
A break can be inserted in any such syllable pair. For each 
syllable pair, e.g., when there is no silence inside the “y.uw-
aa.r” syllable pair, it indicates that there is no break in between; 
otherwise, when there is a break (silence) between them, we use  
“y.uw-sil-aa.r” to mark it. If the marking from speaker A is the 
same or different from the corresponding from speaker B, the 
break position for this syllable pair is counted as matched (with 
a value 1) or mismatched (with a value 0), correspondingly.  

Four possible types of syllable pairs and the corresponding 
values are listed in Table 1. The percentage of the matched 
syllable positions out of the total number of syllable pairs is  
used as break position similarity. In our sentence example, if 
the syllable sequence is “y.uw sil aa.r aw.t g.ow sil ih.ng” from 
speaker A and “y.uw aa.r sil aw.t g.ow sil ih.ng” from speaker 
B,  the break position similarity is 0.5 between A and B for this 
sentence.   

Table 1: Four types of compared adjacent syllable 
pairs and their corresponding value.  

Compared adjacent syllable pair Value 
syll1-sil-syll2   /   syll1-sil-syll2 1 

syll1-syll2    /    syll1-syll2 1 
syll1-sil-syll2   /   syll1-syll2 0 
syll1-syll2   /   syll1-sil-syll2 0 

3.2.2. Break duration matching 

Break duration comparison is based upon the analysis of the 
break position. When the same syllable pair in two utterances 
have a silence break inside, we will also compare their break 
durations.  

Since different speakers can have different speech rates, we 
need to normalize the durations of different speakers with the 
corresponding speech rates as in Eq. 2, where �� is the speech 
rate of speaker �, �� is the duration of the ��� syllable in the 
utterance, and �  is the total number of syllables in this 
utterance.  

                   �� = �
∑ ������

 (2) 

The break duration similarity of the  ��  syllable pair is 
computed as shown in Eq. 3 

                  
!�!
" = �1∗�1 

�2∗�2 
 (3) 

where �� and �# are the speech rates of speaker 1 and  2, 
respectively; ��" and �#" , the break durations of the  �� 
syllable pair of speaker 1 and speaker 2. It should be noted 
that the smaller value is used as the numerator in Eq. 3 to 
constrain the value within 0 and 1. The utterance-level break 
duration similarity 
!�! is the average of syllable-level break 
duration similarity in Eq. 4, where % is the total number of 
matched syllable pairs with breaks inside. 

                  
!�! = ∑ &'�'
*+*��

,  (4) 

3.3. Distribution of prosodic similarity 

We extract the two prosodic similarities (F0 and break) and 
analyze their distributions in the two databases, CMU-Arctic 
and mTutor-Users. Figs 3 and 4 show the distributions of F0 
similarity and break similarity histograms, respectively. In Fig. 

3, we observe that F0 similarity in CMU-Arctic, i.e., native 
speakers, is with a higher mean than that in mTutor-User, i.e., 
non-native. The shape of the distributions are similar to a 
Gaussian one. The two corresponding distributions of break 
similarity are more separated from each other as shown in Fig 
4. The distributions show that both F0 and Breaks prosodic 
features can distinguish native from non-native speaker, based 
upon their similarity pattern in a single utterance.  

 

 

4. Gaussian Mixture Model 
We use GMMs [16] to model the distribution of a speaker’s 
prosodic similarity: 

          p(-|.) = ∑ /03(-|40, ∑0)607�  (5) 

Eq. 5 is a weighted sum of 8  component Gaussian densities 
used for the input feature in our DNN training. In the equation, 
- refers to the input data; λ, the model’s parameters; /0 , the 
weight of the :��  component; 3 , the Gaussian component, 
which is defined in Eq 6: 

               3(-|40, ∑0) = ;<> {��
(?�@A)B∑CD�(?�@A)}
(#E)F/|∑A|�/  (6) 

In our task,  -  is a 1-dimensional prosodic similarity. The 
number of Gaussian components is determined by Akaike 
information criterion (AIC) [17]. AIC provides a measure of 
model quality for a given set of data, given in Eq. 7, where 
NlogL is the negative log-likelihood of the model and H is the 
number of estimated parameters. The model with minimum 
AIC value is selected. 

                       IJ8 = 2 ∗ �KL3M + 2 ∗ H (7) 

5. Deep Neural Network 
Deep Neural Networks (DNN) have pushed forward the speech 
technology in speech recognition, TTS and other speech 
processing [18, 19]. In this paper, a feedforward network was 
trained to perform a classification task. The aim is to classify a 

 

 

 

Figure 4 The distribution of Break similarity 
in datasets CMU-Arctic and mTutor-User 

Figure 3 The distribution of F0 similarity 
in datasets CMU-Arctic and mTutor-User  
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speaker as a native speaker or a non-native speaker when 
prosodic similarities between his spoken sentence and that of a 
native speaker is measured and input to the classifier.  

5.1. Feedforward network 

In our networks, sigmoid function is used as the activation 
function. We use a softmax function to convert the output to 
posterior probabilities. Stochastic gradient descent (SGD) [20] 
is used as the optimization approach to minimize the loss 
function (cross-entropy). Table 2 lists all DNN models we have 
trained in this paper. Each of them has one input layer, one 
hidden layer (32 hidden units) and one output layer. We set a 
sample-level learning rate at 0.003 for the first 50 batches, 
0.002 for the next 50 batches, and 0.0001 for the rest batches. 
The number of epochs is 20. We used a mini batch of 50 
samples in model D and E while 80 samples in other models.  

5.2. Construction of the input vector   

We trained GMMs for each speaker to model the distribution of 
a speaker’s prosodic similarities. Given an utterance pair, 
prosodic similarity is calculated presented in Section 3. The 
data is used to train a speaker’s GMM, the output probability 
density will be one component of the input vector of DNN 
model. Therefore, the dimension of the input vector is 
determined by the number of GMMs we used. Six models with 
different input vectors are listed in Table 2. Models A, B and C 
used GMMs from 4 native speakers and 4 non-native speakers. 
Model D used GMMs from 2 TTS (each trained with an 
individual speaker’s recordings) and 2 non-native speakers, 
while model E used GMMs from 2 native speakers and the same 
non-native speakers used in model D. The evaluation of these 
models are discussed in Section 6. 

6. Results 
From models A to C, we selected prosodic similarities from 
6,000 native-native utterance pairs and 6,000 native-nonnative 
utterance pairs. For model D, we selected that from 4,500 TTS-
native utterance pairs and 4,500 TTS-nonnative utterance pairs. 
Model E is for comparison with model D, trained with prosodic 
similarities from 4,500 native-native utterance pairs and 4,500 
native-nonnative utterance pairs. All native speakers’ data are 
from CMU-Arctic corpus, non-native speakers’ data are from 
mTutor-User corpus and synthesized speech is from two high 
quality TTS voice fonts of Microsoft TTS.  Each model’s 
datasets were randomly divided into 6 subgroups with the same 
size, where 5 groups were used for training a neural net-based 
classifier and the remaining group was used for testing. A cross-
validation was performed on the 6 subgroups and the average 
classification accuracy was used as the final results depicted in 
Table 2. 

6.1. F0 similarity and Break similarity 

With Model A, F0 similarities are converted 8 F0-GMMs of the 
8 speakers (4 native and 4 non-native). Model B is similar to 
Model A except it uses Br-GMMs and Break similarity data. 
Figs 3 and 4 have shown that break similarity performs better 
than F0 similarity to distinguish native from nonnative 
speakers. A similar trend can also be observed in results shown 
in Table 2.  Model B (73.9%) performs better than model A 
(68.8%). By augmenting the two prosodic similarities together 
as features in model C, we improved the classification accuracy 
to 76.7%.  

6.2. Log transformation 

The input vector constructed by the output of the GMMs is a set 
of densities. To avoid a possible underflow in taking log, we 
constrain the value to a small positive floor. In Table 2, all 
models obtained improved performance after the log 
transformation. The best result is from model C, at a high 
classification accuracy of 91.7%.  

6.3. TTS-based synthesized voice as reference  

The classification performance of model D is at 88.1%, slightly 
lower than that of model E at 91.2% but still quite good. A high 
correlation coefficient of 0.957 between the posterior predicted 
by models D and E, computed as in Eq. 8, justifies the usage of 
TTS voice to replace native speakers’ recordings.   OPQ  is the 
posterior of the R��  utterance is spoken by a native speaker 
predicted by model D 

                
SFST = ∑ SFU∗STUVU��
�∑ SFUVU�� ∗�∑ STUVU��

  (8) 

Table 2: Classification Accuracy with Log 
transformation 

Model 
No. 

Prosodic  
Feature 

Input 
Dimension 

Classification 
Accuracy 
RawInput 
(%) 

+ Log   
(%) 

A F0 8 68.8 73.2 
B Br 8 73.9 91.0 
C  F0+Br  16 76.7 91.7 
D (TTS) F0+Br 8 71.1 88.1 
E F0+Br 8 72.9 91.2 

7. Conclusion 
Prosodic similarities in F0 and Break are studied in this paper. 
They are used for classifying native English speakers from non-
native ESL learners and for assessing the non-nativeness of an 
ESL learner. Based upon the distributions of native and non-
native speakers’ prosodic similarity patterns, we train deep 
neural nets to classify a sentence as uttered by a native or a non-
native English speaker. The best classification accuracy is 
obtained at 91.7% by using CMU-Arctic and mTutor-User 
speech databases. By replacing native speakers’ references with   
Microsoft TTS, we obtain a classification performance of 
88.1%, which is fairly close to that obtained by using native 
speakers’ recordings. The result achieved with our TTS voice 
is high enough to justify its usage for assessing the prosody 
quality of a learner’s utterance spoken after a prompted text or 
corresponding TTS synthesized voice.  
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