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Abstract 
Language identification (LID) systems typically employ i-
vectors as fixed length representations of utterances. However, 
it may not be possible to reliably estimate i-vectors from short 
utterances, which in turn could lead to reduced language 
identification accuracy. Recently, Long Short Term Memory 
networks (LSTMs) have been shown to better model short 
utterances in the context of language identification. This paper 
explores the use of bidirectional LSTMs for language 
identification with the aim of modelling temporal 
dependencies between past and future frame based features in 
short utterances. Specifically, an end-to-end system for short 
duration language identification employing bidirectional 
LSTM models of utterances is proposed. Evaluations on both 
NIST 2007 and 2015 LRE show state-of-the-art performance. 
Index Terms: Language identification, Short duration 
utterances, bidirectional LSTM 

1. Introduction 
Duration mismatch between training and test utterances is a 
long-standing problem in language identification (LID) [1, 2]. 
Commonly, long utterances are available for model training 
but test utterances may be very short during the language 
recognition phase. This duration mismatch may be 
compensated by techniques such as shifted delta coefficients 
(SDC) and eigenfeatures [3]. Most state-of-the-art LID 
systems rely on the total variability i-vector modelling 
approach [4] for obtaining fixed length representations of 
utterances. This elegant framework exhibits low intra-class 
variability and leads to compact clusters when sufficient 
statistics can be reliably estimated from an utterance. 
However, the performance degradation when dealing with 
short utterances is one of the major challenges in this 
approach. The i-vector framework has previously addressed 
short duration utterances by introducing different techniques 
such as i-vector extraction method using prior distribution [1], 
and exemplar-based representation [2] for LID. Even though 
these methods reduce the duration mismatch in i-vector space, 
the improvements are not significant. 

Recently end-to-end automatic LID systems that make use 
of deep neural networks (DNNs) have been shown to be 
effective for short duration language identification [5-7]. 
However, while DNN-based approaches have proven to 
perform well in several circumstances, they rely on stacking 
multiple acoustic frames as an input in order to model a longer 
time context [5]. On the other hand, long short term memory  
recurrent neural networks have the ability to capture temporal 
sequences from the connection between units from directed 
cycles and have become a conventional model when dealing 

with time dependencies [8]. However, in unidirectional 
LSTMs, it can be argued that the main disadvantage is that 
there is no context information concerning future frames.  

In the end-to-end modelling approach [7, 9, 10], frame by 
frame DNN and LSTMs are often used. Frame by frame 
models can determine a frame-level probability for each 
language model. In these situations, the language label for a 
given utterance is computed by identifying the language 
corresponding to the maximum probability after averaging the 
frame by frame prediction results. Further, it has been recently 
shown that averaging only the final 10% of frame-level log 
probabilities in LSTM networks will lead to better 
performance compared to averaging all the frame-level log 
probabilities [8]. However, the underlying assumption used to 
justify averaging frame-level log probabilities is that the 
frames are independent of each other, which is not true. The 
use of recurrent neural network structures, and recently deep 
bidirectional LSTM (BLSTM) based acoustic models, has 
been shown to yield the state of the art performance in speech 
recognition [11-13]. Moreover, [11, 12, 14] show that the 
performance of this BLSTM performs much better than the 
unidirectional LSTM and also feed forward neural networks. 
However, this unified BLSTM mechanism has not been 
applied to date for short duration in LID.   

Motivated by the bidirectional LSTM (BLSTM) 
mechanism that effectively captures temporal dependencies in 
the acoustic signal, a bidirectional model is introduced to 
implement utterance level classification for end to end 
automatic language identification. Use of BLSTM 
mechanisms enhance the learning ability in long range 
discriminative features over the input sequence compered to 
LSTM for LID systems. Moreover, similar to the i-vector, the 
proposed utterance level representation gives the ability to 
successfully extract a fixed length feature vector for an 
utterance without degrading performance. The underlying idea 
of this work is to capture the robust discriminative information 
from short duration utterances for LID. To assess the proposed 
method, comparisons were conducted between the state-of-
the-art i-vector, unidirectional LSTM, and the proposed 
BLSTM systems and the differences in their performance are 
shown.  

2. Bidirectional LSTM recurrent neural 
networks 

Generally, the memory blocks of the LSTM hidden layers 
store the temporal state of the input to the network at each 
time step acting as memory. The probability of a given 
utterance belonging to one of the identifiable languages is 
computed at the LSTM output. This result relies on all 
previous frames from that sequence of the utterance [10, 15]. 
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Bidirectional LSTMs are instead based on the idea that the 
output at time ‘�’ may depend on the previous elements in the 
sequence as well as the future elements. Bidirectional LSTMs 
are formed by stacking two LSTMs on top of each other as 
shown in Figure 1. The output is then computed based on the 
hidden state of both LSTMs. This process is commonly used 
for tagging and labelling tasks [16, 17], or for embedding a 
sequence into a fixed length vector. Our purpose is similar to a 
labeling task in that the language of an utterance must be 
accurately from a pool of languages [17].  Furthermore, 
labeling based on the past, present and future samples of the 
sequence may enhance the predictive capability of the 
embedded languages, particularly for problems where only 
small amounts of data are available. 

 
The results of the LSTMs in each direction are 

concatenated in the output layer. In bidirectional LSTM 
layers, the output � can be computed from the forward 
sequence ℎ�⃗ � and backward sequence ℎ⃖�� as 

where 	�, ℎ�⃗ � and ℎ⃖�� are the acoustic feature input and the two 
hidden states respectively at time �. For each LSTM memory 
block, the recurrent hidden layer function ℋ is derived in the 
conventional manner [11]. The language identification process 
trains parameters of the proposed neural network system 
(Section 3.4) using a supervised approach for the target 
language, so that the system provides language aware 
alignments. Based on its structure, this bidirectional model 
may benefit in capturing high level phoneme information from 
cell weights. Forget weights may help to reduce other 
common variations between languages when trained on short 
duration data. Moreover, unlike i-vectors, capturing sequential 
information could help to mitigate the duration mismatch for 
short duration utterances. 

3. Experimental Setup 

3.1. Databases and Evaluation measures 

In order to perform this comparison, the data provided by the 
National Institute of Standards and Technologies (NIST) in 
2007 and 2015 for Language Recognition Evaluations (LRE) 
was used. The NIST LRE 2007 dataset [18] was used for 
demonstrating the effectiveness of the proposed BLSTM 
based model adopted in this paper. The test corpus is a 3s 
condition evaluation set from NIST LRE 2007. There are 14 
languages and 2158 segments included in the 3s evaluation 
data. The amounts of training data ranged from 264 hours for 
English to a mere 1.45 hours for Thai.  
     Another dataset used for the experiments is NIST LRE 
2015 [19]. This dataset contains limited training data from 
conversational telephone speech (CTS) and broadcast 
narrowband speech (BNBS). The dataset includes 20 

languages grouped according to 6 different clusters. The total 
amount of data in each language varies from 30 minutes to 
over 100 hours. The evaluation set contains 33784 segments 
of 3s condition data in the 20 languages included in NIST 
LRE 2015.  
       In all experiments, training data set was split into 3s 
chunks and 15% of the training data was held out as a 
development set. Two different metrics were used for 
performance evaluation. The accuracy, i.e. the percentage of 
correctly identified trials when making hard decisions based 
on the maximum probability for each target language, was 
calculated and the Equal Error Rate (EER) was computed 
language by language for both NIST 2007 and 2015 databases. 

3.2. Bottleneck Feature Extraction 

The sequential input of the BLSTM-based model was a 42-
dimensional vector of acoustic bottleneck features (BNFs).  
BNFs were extracted using a DNN trained on MFCC features 
fixing the output layer to denote triphones (4199-state senone). 
MFCC features were extracted with a 10ms frame shift from 
25ms windows. The DNN was trained on 300 hours of 
Switchboard 1 data. The DNN consisted of 5 layers each with 
1024 nodes except at the bottleneck layer (4th layer). All of 
these layers used a ���ℎ activation function with the 
exception of the bottleneck layer. The bottleneck layer 
comprised 42 nodes using a linear activation function. After 
extracting bottleneck features, vector quantization voice 
activity detection (VQ-VAD) was used. Compared with 
MFCC features, these BNFs contain phonetically rich 
information and have been shown to provide outstanding 
performance gains compared with typical i-vector systems 
[20]. 

3.3. Reference i-vector system  

   
The reference i-vector system shown in Figure 2 follows the 
standard procedure of [20] and is built on 42-dimensional 
BNFs. The universal background model (UBM) consisting of 
1024 Gaussian components was trained and the total 
variability subspace of 400 dimensions was derived for this 
UBM with 10 EM iterations. Simple cosine distance scoring 
(CDS) was performed to classify these i-vectors, after 
projecting them to a lower dimension space based on linear 
discriminant analysis (LDA). 

3.4.  Proposed BLSTM system description 

 
For experimental comparison, LSTM and bidirectional LSTM 
based frame level LID systems were established as in Figure 
3. All models were trained with the truncated back-
propagation through time (BPTT) algorithm [21, 22]. The 
overall system contained two bidirectional LSTM layers 
followed by two fully connected layers. The third hidden layer 
used a linear activation function while the fourth hidden layer 

 ℎ�⃗ � =  ℋ
�����⃗ 	� + ����⃗ ���⃗ ℎ�⃗ ��� + ����⃗ � (1) 

 ℎ⃖�� =  ℋ(���⃖��	� + ��⃖���⃖��ℎ⃖���� + ��⃖��) (2) 

 �� =  ����⃗ �ℎ�⃗ � + ��⃖���ℎ⃖�� + �� (3) 

 
Figure  1: Structural composition of bidirectional LSTM 

network using feed-forward and feedback loops. 
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Figure  2: Block diagram of reference i-vector system. 
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Figure  3: Block diagram of the proposed end to end 

bidirectional LSTM system. 
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used rectified linear units (ReLUs). 42 dimensional BNFs 
were used as the network’s input, as explained in Section 3.2. 
Each hidden layer contained 512 nodes except the third layer, 
which had only 400 nodes. This 400 nodes hidden layer was 
used for feature extraction for analysis purposes. The output 
was a softmax layer with the same number of units as a 
number of languages and used the ADAM optimizer as in [23] 
along with cross entropy error for the back propagation. A 
LSTM system was established for comparison purposes using 
same above system configuration except the two bidirection 
LSTM layers were replaced by LSTM layers.  

4. Results and Analysis 

4.1. Utterance-level representation 

In this work, two types of utterance level representation 
methods were investigated for both LSTM and bidirectional 
LSTM networks on the NIST LRE 2007 3 second condition. 
As shown in Figure 4, the method of training on frame-level 
labels and predicting test labels by averaging the final 10% of 
log probabilities (Average), was compared with the proposed 
method of training on frame level labels and predicting test 
labels on only the final frame probability (Final_frame). This 
proposed method may be a more successful approach 
compared to averaging the frame level predictions, or an i-
vector approach, which does not account for any sequential 
information.  

 

 
      The underlying ideas behind both methods are similar: the 
frames belonging to a particular language are close to each 
other in the language embedding space and this will provide 
an utterance representation that makes use of frame clustering.  
According to the initial evaluations shown in Table 1, neither 
LSTMs nor BLSTMs showed significant performance 
improvement by using the ‘Average’ scoring method 
compared to the ‘Final_frame’ method. The main reason 
could be that there are more fully connected layers followed 
by RNN layers as described in Section 3.4, and these fully 
connected layers can broadly capture the variation among 
sequential information. However, it is noticeable that the EER 
is degraded in the ‘Average’ method compared with the 
‘Final_frame’ method. Therefore, frame-to-frame training and 
prediction of test labels on the only final frame (Final_frame) 
in an utterance were used for further experiments. 

4.2. Analysis of feature space 

Prior to evaluation of the performance of the proposed LID 
system, the feature space of each system was investigated to 
study feature reliability. In order to visualize feature 
distributions, the t-SNE [24] algorithm was used to project the 
feature vectors into two dimensional space (t-SNE-map) using 
400-dimensional test and training vectors together for each 
system (see Figure 5). t-SNE retains local similarities between 
samples in the two-dimensional space at the cost of retaining 
the similarities between dissimilar samples non linearly unlike 
to PCA and MDS that use the same linear mapping to all data.  

 
     Figure 5 suggests why both LSTM and bidirectional LSTM 
systems may perform better compared with i-vectors. Even 
though t-SNE is a non-parametric algorithm it is able to 
preserve language cluster information from 400 dimension 
feature vectors in both LSTM and bidirectional LSTM 
systems (14 separate clusters). However, this clustering ability 
is not clearly seen in for the i-vector case, even after applying 
LDA. When comparing LSTM and bidirectional LSTM it can 
be noticed that the LSTM feature map is more scattered 
compared to bidirectional LSTM and the bidirectional LSTM 
t-SNE-map shows a better training (red) and test (blue) 
distribution match. In order to demonstrate this argument, the 
J-measure [3] was also computed in both the original feature 
spaces of training and test sets.  The J-measure is the  ratio  
between  inter-class  scatter  to  intra-class scatter and larger 
the value  of  J-measure,  the  better  the  discrimination  of  
the  classes  in  the  feature  space.  

 
     Table 2 gives the J-measure evaluated on both the training 
and test sets, and it can be seen that LSTMs and BLSTMs lead 
to better discrimination between languages compared to i-
vectors when modelling the same feature space. LSTM 
features also have a higher J-measure on the training set; on 
the test set this is dominated by BLSTM features. This may be 
a pre-indications that BLSTMs perform better than LSTMs. 
Both t-SNE maps and J-measure show the effectiveness and 
sensitivity of the BLSTM feature compared with the reference 
i-vector and LSTM system.  

4.3. Reliability and effectiveness of BLSTM mechanism 

The main difference between LSTMs and BLSTMs is in the 
structural composition. Specifically, the BLSTM contains an 
additional feedback node. The corresponding frame-level 
classification score on the target category was analyzed to 
compare the reliability and effectiveness of the bidirectional 

 
Figure  4: Comparison of utterance level representation 

methods for RNN systems. 
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Table 1: Comparison of the performance of LSTM and 
BLSTM for utterance level representation tested on NIST 

LRE 2007 (3 sec. cond.) 
Method Accuracy (EER) 

LSTM BLSTM 
Average 58.39 (29.74) 64.37 (25.39) 
Final_frame 58.20 (18.77) 64.23 (15.64) 

 
Figure  5: Illustration of t-SNE feature maps for (a) i-

vector, (b) LSTM and (c) BLSTM feature vector 

Table 2: Comparison of J-measure on training and test 
sets for the proposed BLSTM system with the LSTM and 
reference i-vector system tested on NIST LRE 2007 (3 

sec. cond.) 
J- measure On training set On test set 
i-vector 10.82 5.15 
LSTM 12.29 6.34 
BLSTM 11.87 6.70 
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mechanism compared with LSTM. For a number of 
utterances, the frame-level probability score to the target 
language was analyzed. This showed that the sequential output 
of the RNNs (both LSTMs and bidirectional LSTMs) becomes 
more discriminative over time based on the modelling ability 
of long span dependencies. However, the LSTM classification 
score took time to reach a high probability value, whereas the 
BLSTMs achieved high probability scores from the start. The 
higher initial score that is maintained uniformly confirms the 
better effectiveness and reliability of the BLSTM mechanism 
over the LSTMs.  

Performing eigenvalue decomposition enables us to 
explicitly find the orthogonal directions of maximal variations 
in the data through eigenvectors and eigenvalues. Eigenvalues 
are directly related to the proportion of information captured 
along the directions of the corresponding eigenvectors. The 
capacity of BLSTMs and LSTMs to learn language 
information embedded in short duration speech signals was 
explored by observing the eigenvalue variation of the cell and 
forget weights from layer 1 in each system. Figure 6 shows 
that BLSTM (red) captures more information (has higher 
eigenvalues) compared to LSTMs (blue), when systems are 
trained for short duration utterances. Thus, the cumulative sum 
of the eigenvalues are higher in BLSTMs than in LSTMs.  

 
      Table 3 gives a comparison of the LSTM and the BLSTM 
end-to-end LID systems for both direct decision score 
(softmax probability) and cosine distance score (CDS) 
calculation approaches. The direct scoring in LSTM and 
BLSTM-based LID systems is identical to the method 
‘Final_Frame’ adopted from Section 4.1. The CDS scoring in 
LSTM and BLSTM LID systems were calculated for the 400-
dimension feature vectors extracted from the linear layer of 
each system. These vectors are identical to i-vectors and only 
final feature vector for each utterance was extracted. First, it 
was shown that the i-vector system performs better for short 
duration only if the system was trained from long duration 
utterances. This is expected since the i-vector extraction 
depends on statistics. Consequently, the reliability of these 
statistics increase with the utterance duration.  
        The BLSTM-based end-to-end (direct scoring) LID 
system seen in Table 3 achieves a relative improvement of 
18.69% in terms of accuracy and 16.99% relative EER 
reduction compared with the referenced i-vector system. This 
excellent performance confirms the effectiveness of the 
BLSTM mechanism. Moreover, it is clear that end-to-end 
LSTM and bidirectional LSTM systems perform similarly to 
CDS for the extracted features from all systems. Finally, linear 

logistic regression fusion using the FoCal Multiclass toolkit 
[25] was applied to the two individual systems described for 
both LSTM and BLSTM systems with the i-vector system. 
The result of this fusion is better than the systems itself.  
However, it is noticeable that the fused BLSTM extracts less 
complementary information compared to the fusion i-vector 
system trained on long duration utterances. 

 
     The results for NIST 2015 LRE are shown in Table 4. 
Interestingly and unlike the NIST 2007 results, it can be seen 
that both the LSTM and BLSTM systems failed to outperform 
the i-vector system. The main difference between the two LRE 
data sets is that there is a large channel mismatch between 
training and test data distributions in LRE 2015, which caused 
both systems to degrade in performance.  However, the fusion 
of i-vector system with LSTM and BLSTM systems 
independently did outperform the reference i-vector system.  

 

5. Conclusion 
In this work, a detailed analysis of the use of bidirectional 
LSTMs for short utterance automatic language identification 
(LID) has been presented. Specifically, it was shown that a 
fixed-length feature vector similar to an i-vector can be 
successfully obtained from BLSTMs for an utterance. The t-
SNE maps and J-measure suggest a higher clustering ability in 
the BLSTM feature space relative to i-vectors. Results show 
that the proposed system clearly outperforms the reference i-
vector based system on the NIST 2007 dataset, which is more 
challenging in terms of its highly unbalanced datasets and its 
inclusion of close related languages. The BLSTM system 
gives comparable results for NIST 2015 LRE, and future work 
will require more attention to deal with the channel mismatch 
found in this dataset.  Finally, it was shown that BLSTMs 
have a higher capability to capture discriminative information 
compared with LSTMs and i-vectors for short duration 
utterances.  
 

 
Figure  6: Language information embedded in (a) cell 
weights and (b) forget weights from eigenvalue and 

cumulative eigenvalue variations. 

Table 3: Performance of the proposed system compared 
to reference i-vector and LSTM systems for NIST LRE 

2007 3s condition. 
LID System Accuracy (EER) 

Direct CDS 
i-vector (trained on 
short duration) - 32.81 (27.77) 

i-vector (trained on long 
duration) (i-vec long) - 52.22 (18.84) 

LSTM 58.20 (18.77) 58.48 (17.56) 
BLSTM 64.23 (15.64) 64.83 (18.38)  
i-vec long + LSTM 64.32 (15.80) 65.48 (14.27) 
i-vec long + BLSTM 66.87 (15.24) 68.54 (12.92) 

Table 4: Performance of the proposed system compared 
to reference i-vector and LSTM systems for NIST LRE 

2015 3s condition. 
LID System Accuracy (EER) 
i-vector 33.83 (28.00) 
LSTM 24.11 (37.17) 
BLSTM 29.40 (34.79) 
i-vector + LSTM 37.25 (25.29) 
i-vector + BLSTM 38.39 (25.05) 
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