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Abstract
This paper presents a waveform modeling and generation
method for speech bandwidth extension (BWE) using stacked
dilated convolutional neural networks (CNNs) with causal or
non-causal convolutional layers. Such dilated CNNs describe
the predictive distribution for each wideband or high-frequency
speech sample conditioned on the input narrowband speech
samples. Distinguished from conventional frame-based BWE
approaches, the proposed methods can model the speech wave-
forms directly and therefore avert the spectral conversion and
phase estimation problems. Experimental results prove that the
BWE methods proposed in this paper can achieve better per-
formance than the state-of-the-art frame-based approach utiliz-
ing recurrent neural networks (RNNs) incorporating long short-
term memory (LSTM) cells in subjective preference tests.

Index Terms: speech bandwidth extension, stacked dilated
convolutional neural networks, causal convolution, non-causal
convolution, WaveNet

1. Introduction
Due to the restriction of speech acquisition equipments and
transmission systems, the bandwidth of speech signal is usually
limited to a particular narrowband of frequencies. Although the
intelligibility of narrow speech is satisfactory, the absence of
high-frequency counterpart leads to a muffled sound, resulting
in seriously degraded speech quality, naturalness and speaker-
similarity. Speech bandwidth extension (BWE) techniques aim
at automatically restoring the missing high-frequency com-
ponents of narrowband speech by exploiting the correlation
that exists between low and high frequency parts of wideband
speech. A well-built BWE system can not only bring in a
dramatic improvement of perceived speech quality for conven-
tional telephone networks but also benefit other speech process-
ing tasks such as speech enhancement [1] and recognition [2].

BWE algorithms have been studied for decades and a large
amount of methods have been proposed to further improve the
quality of narrowband speech. There were some simple meth-
ods such as codebook mapping [3], linear mapping [4] and rule-
based spectrum folding, and some more complicated statistical
approaches using Gaussian mixture models (GMMs) [5, 6, 7]
and hidden Markov models (HMMs) [8, 9, 10]. Nevertheless,
these methods suffer from the over-smoothing effect and severe
artifacts due to their deficient ability of acoustic modeling.
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Deep learning technology has been intensively studied and
explored by speech signal processing researchers in recent
years. In many speech generation tasks such as voice con-
version, speech enhancement, articulatory-to-acoustic mapping
and text-to-speech synthesis [11], different kinds of neural net-
works with various deep structures have shown remarkable
acoustic modeling capabilities and better performances than
conventional methods based on GMMs or HMMs. Several
stochastic neural networks such as restricted Boltzmann ma-
chines, bidirectional associative memories [12] and DNNs with
different structures and training strategies [2, 12, 13, 14, 15,
16] have also been adopted in BWE tasks to replace GMMs
or HMMs to model the sophisticated and non-linear map-
ping relationship from narrowband speech parameters to high-
frequency ones. Because of their better ability of modeling
high-dimensional observations with cross-dimension correla-
tions, raw and high-dimensional spectral envelopes or magni-
tude spectra rather than their low-dimensional representations
can be utilized directly in those DNN-based methods. Deep uni-
directional or bidirectional RNNs with stacked layers of LSTM
cells [17, 18] have also been adopted to model the temporal
dependencies among the sequences of low-frequency and high-
frequency spectral features. RNNs can effectively alleviate the
discontinuity caused by the frame-independent mapping func-
tions in feed-forward DNNs. The experimental results of pre-
vious work [12, 13, 14, 15] have proved that DNN-based BWE
methods can effectively alleviate the over-smoothing effect and
improve the speech quality of BWE outputs compared with con-
ventional GMM-based ones. Meanwhile RNN-based methods
[17, 18] can further improve the BWE reconstruction accuracy
and acquire better subjective listening performances.

Existing BWE approaches are usually frame-based and the
core procedures of converting input narrowband speech to wide-
band output are conducted in frequency domain. Current BWE
methods also mainly concentrate on addressing the problems
of modeling the intrinsic correlation or mapping relationship of
the magnitude spectra. The model-based prediction of the high-
frequency phase spectra is always difficult due to the issue of
phase wrapping. However, the inaccuracy of the reconstructed
high-frequency phase spectra can also lead to severe whistling
and hissing artifacts and metallic sounds.

Convolutional neural networks have enjoyed great popular-
ity as means for image processing and have also been employed
as acoustic models in speech recognition tasks [19, 20, 21, 22].
Convolutional layers can aggregate feature extractors by di-
rectly operating on raw signal such as image pixels and speech
waveforms. In addition to classification tasks, various kinds
of CNNs, such as WaveNet [23] for text-to-speech synthesis
and ByteNet [24] for machine translation, have achieved signif-
icant improvement on generation tasks. Therefore motivated by
the success of the dilated convolution architectures [25, 26] as
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well as WaveNet and ByteNet, a BWE method using stacked di-
lated CNNs is present in this paper to avoid the spectral analysis
and phase modeling issues by directly modeling and generating
speech waveforms.

The rest of this paper is organized as follows. Section 2
gives a brief review of the conventional frame-based BWE ap-
proaches using deep structured neural networks. Section 3 de-
scribes the stacked dilated CNNs and the structures of residual
and skip connections applied in this paper. Our proposed meth-
ods are introduced in detail in Section 4. Section 5 shows the
experimental results and Section 6 concludes this paper.

2. Frame-based BWE using magnitude
spectra and regression neural networks

Almost all the current BWE systems are frame-based with cer-
tain frame length and frame shift. A vocoder is an indispensable
part for feature extraction and the speech signal transforma-
tion between time and frequency domains. Logarithmic mag-
nitude spectrum derived from the short-time Fourier transform
[27] on speech waveforms is one of the most popular frame-
based acoustic features for BWE tasks. Various full-connection
regression neural networks such as DNNs and RNNs with
stacked LSTM cells have been employed to estimate the map-
ping function from narrowband magnitude spectra to their high-
frequency counterparts under minimum mean squared error cri-
terion [13, 15, 17, 18]. At the stage of restoration, the log power
spectra of wideband speech were reconstructed by concatenat-
ing the input magnitude spectra of narrowband speech and the
high-frequency magnitude spectra predicted using the trained
networks. The phase spectra of wideband speech were usually
estimated from the phase spectra of narrowband speech by mir-
ror inversion [13, 15]. Finally, inverse FFT and overlap-add al-
gorithm were carried on to reconstruct the wideband waveforms
according to the extended magnitude and phase spectra.

3. Dilated CNNs for waveform generation
3.1. Dilated CNNs

Convolutional neural networks are a specialized kind of feed-
forward neural networks for signal processing, which provide
shift-invariance and weight sharing properties over time or
space. Such neural networks have been tremendously success-
ful in practical applications such as image recognition. CNNs
can also be used as sequence models with a fixed dependency
range by employing a mathematical convolution operation on
time-series data. It has been demonstrated that CNNs can
further reduce word error rate by modeling directly on raw
speech waveforms in speech recognition [20, 21, 22]. As for
speech generation tasks, DeepMind’s WaveNet [23] was pro-
posed for text-to-speech synthesis and other general audio gen-
eration tasks, which was capable of producing significantly
more natural sounds than conventional approaches. Different
from existing paradigms for parametric speech generation algo-
rithms, WaveNet performed autoregressive speech sample gen-
eration using an acoustic model with dilated causal convolu-
tional layers instead of depending on vocoders. The architec-
tures of exploited dilated CNNs are illustrated on Figure 1. The
causal convolutional layers have various dilation factors that al-
low their receptive field to grow exponentially in terms of the
depths of networks as opposed to linearly, and can therefore
cover the input history information from thousands of timesteps
ahead. For obtaining a large range of receptive field, an ex-

Figure 1: Network structures of stacked dilated causal CNNs.

Figure 2: Structures of stacked dilated non-causal CNNs.

tremely deep structure with many convolutional layers is always
needed. Such deep dilated CNN can be constructed by stacking
multiple convolutional layers one on the top of another, and the
output sequence of lower layer is considered as the input se-
quence for the following layer. The dilated causal CNN can be
regarded as a statistical model and the conditional distribution
of the output sample sequence y = {y1, y2, · · ·, yT } given the
input sequence x = {x1, x2, · · ·, xT } is factorized as the prod-
uct of conditional probabilities as follows:

p (y | x) =
T∏

i=1

p (yi | xi−N+1, xi−N+2, · · ·, xi) , (1)

where N is the length of the receptive field. Such causal con-
volution structures are designed to capture a long range of past
inputs, which can guarantee low latency and autoregressive gen-
eration mechanism as WaveNet.

Nevertheless, the future input information is also quite es-
sential for the reconstruction of the output sequence. The
dilated non-causal convolution architectures like DeepMind’s
ByteNet [24] as depicted on Figure 2 are able to take full ad-
vantages of the context of the input sequence. Hence such non-
causal layout is especially efficient when subsequent input in-
formation is required or necessary. Then Equation (1) should
be rewritten as following:

p (y | x) =
T∏

i=1

p
(
yi | xi−N/2, xi−N/2+1, · · ·, xi+N/2

)
, (2)

where N + 1 is the length of corresponding receptive field.

3.2. Residual blocks and gated activation units

Neural networks with many hidden layers usually suffer from
the issues of training accuracy degradation and slow conver-
gence. They can’t be easily optimized as shallower networks.
Residual learning strategies [28] were invented to address these
issues. A variant of residual blocks was also applied on the di-
lated CNNs in WaveNet. As exhibited in Figure 3, each convo-
lutional layer is wrapped in such a residual block which contains
gated activation units and two additional convolutional layers
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Figure 3: Diagrams of the residual blocks.

towards the following and output layers respectively with con-
volution filters of size 1. The residual and parameterized skip-
connections are deployed throughout the network to capacitate
training deeper networks and to accelerate convergence. The
gated activation units in k-th layer are expressed as:

ĥk = tanh(Wf,k ∗ hk)� σ(Wg,k ∗ hk), (3)

where f and g denote the filter and gate parts respectively, σ is
the sigmoid non-linearity function, � is the element-wise prod-
uct and ∗ is the convolution operator. The output layer is cas-
caded with a softmax layer and thus the model can describe the
categorical distribution over the output sequence.

4. BWE using dilated CNNs
Our proposed BWE approaches using dilated CNNs follow the
framework illustrated in Figure 4. Comparing with the conven-
tional BWE approaches introduced in Section 2, the proposed
BWE method can omit all procedures related with vocoders,
such as feature extraction and waveform reconstruction from
the restored wideband features. The method is performed di-
rectly on the narrowband speech waveforms and their correla-
tive wideband or high-frequency speech waveforms.

At the training stage, the parallel narrowband speech wave-
forms can be generated by down-sampling the wideband speech
in the training corpus and are treated as network inputs. Un-
like the output setting for standard WaveNet training, which
was just the time-shift result of the input natural samples, the
output sequences in our BWE methods are the waveform sam-
ples of wideband speech or high-frequency component. To
guarantee the length consistency between the input and output
sequences for model training, the narrowband speech should
be up-sampled to the equal sampling rate with the wideband
speech through zero-interpolation operation and a lowpass fil-
ter. Then the processed narrowband speech acts as the input
for the acoustic models. Similar with WaveNet, all the input
and output sequences are quantized to discrete values using μ-
law [29] and one-hot coding is pursued on the quantized wave-
forms. Especially for the situation that the model outputs are
the high-frequency waveforms, an extra procedure of amplifi-
cation is appended to reduce the quantization error as shown by
the grey dashed lines in Figure 4.

Both deep causal and non-causal CNNs with multiple di-
lated convolutional layers are utilized in this paper to model
the temporal mapping relationship from the input narrowband
sample sequence toward the output target sample sequence as
shown in Figure 4. The low latency characteristic of causal
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Figure 4: Flowchart of the proposed BWE approaches.

convolution architecture is quite suitable for the real-time BWE
applications such as speech communication and the non-causal
structure can be competent for off-line BWE tasks. The net-
work training is based on cross-entropy criterion to iteratively
improve the classification accuracy of the network outputs with
the target output sample sequences in training set. At the stage
of extension, the target wideband or high-frequency waveforms
can be generated sequentially from the sequence of input nar-
rowband speech. Each output sample is drawn by selecting
the quantization level with maximum posterior probability com-
puted by the trained network. The generated waveforms are fur-
ther processed by a highpass filter and are added with the input
narrowband speech to reconstruct the final wideband speech.

5. Experiments
Our experiments adopted the TIMIT corpus [30], which con-
tained English speech from multi-speakers sampled at 16kHz
with 16-bit resolution. Parallel narrowband speech at 8kHz was
produced by down-sampling the wideband speech at 16kHz in
our experiments. 3696 utterances were chosen to construct the
training set. 192 utterances were chosen as the validation set
for model selection and another 192 utterances from the speak-
ers not included in the training set were used as the test set to
measure the performance of different BWE systems. The fol-
lowing five systems were established for comparison.

• RNN: The frame-based method as introduced in Section
2 using RNN and logarithmic magnitude spectra [17];

• CNN1-WB: The proposed causal CNN-based method,
with wideband speech waveforms as output;

• CNN2-WB: The proposed non-causal CNN-based
method, with wideband speech waveforms as output;

• CNN1-HF: The proposed causal CNN-based method,
with high-frequency speech waveforms as output;

• CNN2-HF: The proposed non-causal CNN-based
method, with high-frequency waveforms as output.

5.1. Prediction accuracy validation

Figure 5 exhibits the prediction accuracies of the output speech
samples on the validation set for the four proposed systems
and the effect of using different receptive field lengths for
the stacked dilated CNNs was also evaluated in our experi-
ments. Comparing the CNN1-WB, CNN1-HF systems with
the CNN2-WB, CNN2-HF systems, the experimental results
demonstrate that the methods with non-causal convolutional
layers achieved better prediction accuracies than those based on
causal CNNs when the network outputs were either wideband
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Figure 5: Prediction accuracies on the validation set of the sys-
tems with different lengths of receptive field.

speech waveforms or high-frequency speech waveforms, which
demonstrates the effectiveness of importing the future context
of input. The prediction errors for the CNN1-HF, CNN2-HF
systems were much larger than the CNN1-WB, CNN2-WB sys-
tems for the reason that the noise-like and aperiodic high fre-
quency waveforms are intrinsically much more intractable to
accurately restore. Diverse ranges of the receptive field lengths
from 32ms to 320ms were investigated as depicted in Figure
5. A wide scope of receptive field can help reduce the error
of predicting wideband speech waveforms in the CNN1-WB,
CNN2-WB systems. However, for the CNN1-HF and CNN2-
HF approaches, the accurate rates did not rise as increasing the
length of receptive field, which indicates a short range of re-
ceptive field is sufficient for the situations when the network
outputs are high-frequency waveforms. The aperiodic compo-
nents are much stronger in high-frequency waveforms and the
periodic properties are more remarkable in wideband speech.
Therefore, a wide receptive field of multiple F0 periods are fa-
vorable in the CNN1-WB and CNN2-WB systems and a short
receptive field is acceptable in CNN1-HF and CNN2-HF. Ac-
cording to the results in Figure 5, the network configurations for
each system were determined and are summarized in Table 1.

Table 1: Network configurations for the CNN-based systems. n,
f , r, l, rc and sc represent the number of layers, maximum di-
lated factor, receptive field length, theoretical latency, residual
channel size and skip-connection channel size respectively.

System n f r (ms) l (ms) rc sc

CNN1-WB 40 512 256 - 100 512

CNN2-WB 36 256 256 128 100 512

CNN1-HF 18 256 64 - 100 512

CNN2-HF 16 128 64 32 100 512

The non-causal convolution architectures must bring in a
certain latency for catching sight of future input information,
however they can possess identical receptive field with less con-
volutional layers and drive down computation costs. By using
TensorFlow framework [31] and a single Tesla K40 GPU, a run-
time of about five times slower than real-time is needed. How-
ever, the speed can be further accelerated by removing redun-
dant computation and adopting pipeline strategies.

5.2. Subjective evaluation

Several preference tests were performed to assess the subjec-
tive perceptual quality of the extended wideband speech gen-
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Figure 6: Preference test scores among different BWE systems.
The p-values of t-test in these comparisons are 1.3 × 10−6,
8.1× 10−12, 8.7× 10−4, 7.5× 10−3 and 0.012 respectively.

erated using different BWE systems. In each preference test,
the wideband speech of 20 test utterances randomly selected
from the test set were reconstructed by two different systems
and evaluated in random order by six listeners. The listeners
were asked to choose their preference for each given pairwise
utterances in terms of speech quality.1 The preference scores of
these listening tests are exhibited in Figure 6 with the p-values
from t-test. The comparisons of the conventional frame-based
RNN system and the proposed the CNN1-WB, CNN2-WB sys-
tems demonstrate the proposed method using waveform mod-
eling and causal or non-causal dilated CNNs can successfully
improve the quality of generated speech. The improvement for
the CNN2-WB is more significant than the CNN1-WB system,
which is consistent with the prediction accuracy difference be-
tween these two systems in Figure 5. The superiority of the
CNN1-HF and CNN2-HF systems over the CNN1-WB and
CNN2-WB systems on preference scores indicates the effec-
tiveness of setting high-frequency waveforms as the network
outputs rather than wideband waveforms. Although directly re-
constructing the high-frequency waveforms is more challeng-
ing and the absolute values of sample prediction accuracy are
much lower, it can reduce the redundancy of waveform predic-
tion since the low-frequency component is known. The pro-
posed CNN2-HF system which took advantages of both non-
causal convolution structures and the strategy of directly recon-
structing high-frequency waveforms also achieved better speech
quality than the CNN1-HF system.

6. Conclusions
In this paper, we have proposed a speech bandwidth exten-
sion method with waveform modeling and generation using
dilated CNNs. Compared with the conventional frame-based
BWE method using RNN and magnitude spectra, the proposed
methods are better at modeling the temporal mapping relation-
ship from narrowband input speech to the corresponding high-
frequency component. Subjective experimental results show
that the proposed methods obtained better preference scores
than the RNN-based approach. Meanwhile the systems us-
ing non-causal convolution structures achieved better prediction
accuracies. The methods using high-frequency waveforms as
model outputs outperformed those using wideband waveforms
as outputs. In our future work, further analysis and optimization
of the model structures will be conducted and the conditional
dilated CNNs with auxiliary condition information such as bot-
tleneck features and acoustic features will also be investigated.

1Examples of restored wideband speech are available at http://
home.ustc.edu.cn/˜hicolin/demos_IS2017.html.
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