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Abstract
This paper presents our contribution to the ASVspoof 2017

Challenge. It addresses a replay spoofing attack against a
speaker recognition system by detecting that the analysed sig-
nal has passed through multiple analogue-to-digital (AD) con-
versions. Specifically, we show that most of the cues that enable
to detect the replay attacks can be found in the high-frequency
band of the replayed recordings. The described anti-spoofing
countermeasures are based on (1) modelling the subband spec-
trum and (2) using the proposed features derived from the linear
prediction (LP) analysis. The results of the investigated meth-
ods show a significant improvement in comparison to the base-
line system of the ASVspoof 2017 Challenge. A relative equal
error rate (EER) reduction by 70% was achieved for the devel-
opment set and a reduction by 30% was obtained for the evalu-
ation set.
Index Terms: anti-spoofing, replay detection, playback detec-
tion, speaker recognition

1. Introduction
The efficacy of recent Automatic Speaker Verification (ASV)
systems in terms of determining whether the voice of a speaker
matches the claimed identity is generally high [1–3]. Consider-
ing the maturity of voice biometrics technology, the security of
such systems must be guaranteed also. Development of meth-
ods that increase the robustness of speaker recognition to a va-
riety of attacks is considered a pre-requisite to its widespread
commercial applications.

Spoofing attack is an act of deceiving a biometric system in
order to obtain positive verification status given the claimed (at-
tacked) identity. It is usually performed as an attack at a micro-
phone or telecommunication level. Wu et al. identify four main
spoofing attack types: impersonation, replay, speech synthesis,
and voice conversion [4]. The ASVspoof 2017 Challenge ad-
dresses the problem of replay spoofing detection [5]. This kind
of spoofing is exemplified by a scenario in which the attacker
records the voice of a target speaker and later plays it back in
order to deceive a speaker verification system, as presented in
Figure 1. As stated in [6], these types of attacks are the most
frequent and likely to occur since they do not require major ex-
pertise or equipment. The vulnerability of speaker verification
systems to replay attacks has been reported e.g. in [7–9].

In [8–10] authors describe playback audio detectors which
successfully detect spoofing by comparing a new recording with
the previously acquired ones, however this kind of counter-
measures rely on the assumption that the original recording is
known at the time of attack. Detection of far-field recording
and loudspeaker playback has been reported in [11] and the al-
gorithm that identifies an acoustic channel artefacts has been
presented in [12]. The authors show that cues for distinguishing
genuine and spoofed recordings are present in their amplitude-

Figure 1: Genuine (upper) and spoof (lower) file generation
scenarios.

frequency characteristics.
In this paper, we argue that the replay attacks indeed mod-

ify the amplitude-frequency characteristics of the audio signal.
Specifically, we show that most of the cues can be found in a
high-frequency sub-band. We propose and evaluate several re-
play spoofing countermeasures based on the detection of the ob-
served phenomena and support their potential by the detection
accuracy improvement in comparison to the baseline system of
the ASVspoof 2017 challenge.

In Section 2, we present a short description of the applied
methods and the reasoning we followed in the development of
the proposed countermeasures. The data and the experimental
set-up are described in Section 3. Section 4 presents the evalu-
ation of the obtained results, followed by conclusions presented
in Section 5.

2. Method
In order to construct an informative and discriminative set of
features, we have identified three main sources of factors that
affect the audio signal in the replay spoofing scenario, namely
the playback device, the recording device and the acoustic en-
vironment where the recording takes place.

The playback devices are equipped with loudspeakers,
which typically have a non-flat magnitude frequency response
acting as bandpass filters with non-regular oscillations in the
passband [13]. The recording device induces similar effects on
the signal. A digital recording device also has an analogue-
to-digital converter (ADC) and an associated low-pass anti-
aliasing filter with a specified cut-off frequency. Every digi-
tal recording is subject to the anti-aliasing filtering, however, in
case of a spoofed recording the speech signal undergoes anti-
aliasing filtering at least twice. These filters induce modifica-
tions (imperfections) near the Nyquist frequency. Finally, the
room acoustics where the recording is taking place also has an
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Figure 2: Spectrum of a genuine (a) and spoofed (b) audio files
from the training dataset in the sub-band of 6–8 kHz.

effect on the recorded signal - most notably - reverberation [14].
Although low-frequency effects caused by the usage of

loudspeakers in considered spoofing could be notable, we de-
cided to focus in this work on high-frequency spectral features
which capture the effects introduced by analogue-to-digital con-
version. In particular, we investigate how the different features
computed using high-frequency sub-bands, where anti-aliasing
artefacts due to multiple AD conversions occur, contribute to
spoofing detection. As an initial investigation, we looked into
the differences between the genuine and spoof recordings near
the Nyquist frequency. Example spectrograms of genuine and
spoof files with the same semantic content for the sampling fre-
quency fs = 16 kHz 1 are shown in Figure 2. Strong low-pass
filtering at around 7.25 kHz cut-off frequency and the tempo-
ral spectrum scattering caused by reverberation are visible in
the spectrogram for spoofed case. In order to identify the ap-
propriate frequency range of interest, we compared the equal
error rates obtained using a 2-class Gaussian Mixture Model
(GMM) log-likelihood ratio (LLR) classifier based on cepstral
and CQCC features extracted for several frequency ranges. We
considered the frequency bands with the lower frequency rang-
ing from 1 to 7.5 kHz, while the highest frequency was kept
constant at the Nyquist frequency, i.e. at 8 kHz. The EER re-
sults obtained using ASVspoof 2017 development dataset de-
picted in Figure 3 indicate that setting the lower frequency
bound in the range between 4 and 6 kHz results in the smallest
error, with a minimum at 6 kHz for cepstrum-based features.
For narrower frequency bands, i.e. where the lowest frequency
is above 6 kHz, a rapid increase in EER results is observed.
Consequently, in the following we chose the 4 − 8 kHz and
6− 8 kHz frequency ranges for the selected set of features.

2.1. Features

Based on initial observations of the spectra and EERs, we se-
lected to investigate the frequency features which analyse high
frequency content, besides standard broadband features.

2.1.1. Standard broadband features

CQCC: Constant Q Cepstral Coefficients, which are obtained
from the Constant Q Transform [15] of a signal, followed by

1Respectively files T 1000003.wav and T 1001511.wav from the
training set were used as genuine and spoof examples.
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Figure 3: EER’s computed using Cepstrum and baseline CQCC
with frequency range low limit presented at horizontal axis.

a uniform resampling and a Discrete Cosine Transform (DCT)
[16]. These features were chosen as baseline features for the
challenge [5].

Cepstrum: These features are computed as a logarithm of
the power of the short-time Fourier spectrum, followed by the
DCT applied per frame [17]. Usually, a number of coefficients
returned by DCT is limited to 30 or less. Sub-band analysis is
performed prior to DCT computation by limiting the number of
frequency bins within a spectrum to a specific range.

MFCC: Mel-Frequency Cepstral Coefficients are the most
common features used in speech analysis. MFCC is based on
cepstral coefficients computed as a logarithm of energies ob-
tained from filtering the signal using a bank of triangular band-
pass filters on the mel-frequency scale [18]. The width of subse-
quent bandpass filters is increasing with frequency. We perform
sub-band analysis using outputs of the selected filter banks with
central frequencies from the analysed frequency range.

2.1.2. Proposed features for high frequency analysis

IMFCC: These features were computed similarly to the
MFCCs, but the sequence of filters was inverted in the fre-
quency domain, i.e. high frequencies were represented in more
detail. Some advantages of these features in context of spoofing
attack detection have been described in [19].

LPCC: Linear Prediction Cepstral Coefficients have been
used as one of the common features in speech parametrisation.
These features are also assumed here to represent a generalized
spectral envelope of an anti-aliasing filter. Linear Prediction
coefficients (LPC) are the low order Finite Impulse Response
(FIR) filter coefficients that approximate a spectral envelope of
an input signal. LPCCs are defined as cepstrum computed from
LPC coefficients.

LPCCres: Linear predictive model allows for a decompo-
sition of the speech signal into the linear part that can be pre-
dicted using LPC coefficients and the remaining residual sig-
nal [20]. Specifically, the residual signal contains all relevant
components that are not modelled by linear prediction up to the
selected order. We assume that spoofing artefacts are present
in a higher frequency region of the residual signal, near the
Nyquist frequency. The sub-band residual was modelled with
cepstrum and it was subsequently used as a feature which char-
acterizes the remaining components in the microphone signal.
This include the detailed fluctuations of the microphone signal
such as transients or changes due to multiple AD and DA con-
versions. Finally, LPCCres features combine both LPCC fea-
tures concatenated with sub-band cepstrum of a residual. Note
that the features based on the residual signal have also been
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Figure 4: Extraction of LPCCres features.

used in the previous anti-spoofing challenge [21,22]. The block
diagram of the LPCCres processing is shown in Figure 4.

2.2. Classifier

The spoofing detection can be formulated as a binary classi-
fication problem. In this work Gaussian mixture model was
used as a back-end classifier, obtained by fitting two sep-
arate GMMs to the genuine and spoofed recordings using
Expectation-Maximization (EM) training. Classification score
was computed as a log-likelihood ratio

LLR = log(Lgenuine)− log(Lspoof ), (1)

where Lgenuine and Lspoof are the test sample likelihoods
given the genuine and spoof GMMs respectively. Collected
development and evaluation scores were used to estimate the
EER, which was the only criterion used to rank the systems in
the ASVspoof 2017 Challenge.

3. Performed experiments
3.1. Audio database

In this study the database from ASVspoof 2017 was used as
the only data source. The database was created as a subset
of processed recordings from RedDots project [23]. It is com-
posed of audio files with 16-bit resolution and 16 kHz sampling
rate. For the challenge, the organisers provided three subsets of
the database - training, development and evaluation sets, which
contained 3016, 1710, and 133062 files respectively. Train-
ing and development sets were published with spoof and gen-
uine labels for system preparation. Evaluation contained non-

2The eval results published in this paper have been computed using
V2 dataset updated by the organisers of the challenge in May 2017.

labelled files and was used for system assessment. In the devel-
opment phase back-end classifiers were trained with the train-
ing set, while the development set was used for testing only.
For the purpose of the final evaluation, we trained the classifiers
using both the training and the development sets. In the entire
research the common condition described in [5] was followed,
i.e. no external data were used in training or adaptation of the
presented classifiers.

3.2. Parameterisation of applied features and classifier

For Cepstrum, MFCC, LPCC and IMFCC features, a common
framing was used with 25ms frames and 10ms overlap between
successive frames, while for LPCCres the frame length was ex-
tended to 50ms as it led to higher EERs. Note that CQCCs use
varying frame length as described in [16].

For each frame and feature type, the extracted features
were: the 0th, 19 static and 19 delta features. If due to sub-
band limitation, the number of static coefficients was smaller
than 19, the minimal value was chosen automatically.

For both MFCC and IMFCC, 60 filters that cover fullband
have been designed, and a triangular filter was selected for fur-
ther processing if its central frequency belonged to an analysed
sub-band. MFCC and IMFCC was computed using the Rasta-
mat toolbox [24]. In LPCC extraction 34th-order filters were
approximated using Levinson-Durbin recursion for each frame
in full-band frequency range. Note that no sub-band limiting
was applied for LPCC (separate and in fusion within LPCCres),
and in general the gain parameter was not used in this study.
Recursion transformation of LPC coefficients into cepstral co-
efficients was performed for final feature representation.

To enhance the resolution of CQCC we increased both the
default 96 bins-per-octave and 16 as a number of uniform sam-
ples in the first octave to 256. To this end, the implementation
provided with the baseline system in the challenge was used, as
well as its implementation of sub-band limitation.

In all experiments a 512-component GMM with a diago-
nal covariance matrix was used as a model for both spoof and
genuine classes, as we focused on comparison of different fea-
tures. The MSR Identity Toolbox [25] implementation of the
EM GMM training and scoring was used in this research.

3.3. Experiments with other classifiers

In the speaker recognition domain, the GMM and Universal
Background Model (UBM) approaches have been outperformed
in the recent years by the i-vector framework [3, 26, 27]. Simi-
larly, deep neural networks (DNN) have been shown to provide
state-of-the-art performance in several speech technology do-
mains [28–30]. However, those frameworks typically require
large amount of training data - often thousands of hours of
recordings [29, 30]. We investigated the viability of these ap-
proaches given the limited amount of training data in the chal-
lenge, which however did not lead to improving the results ob-
tained for the GMM classifier. During these experiments, we
observed that both i-vector and DNN 3 models tend to over-fit
the training data, and in consequence they did not achieve satis-
factory results on the eval dataset in the final challenge evalua-
tion.

3We evaluated Long Short-Term Memory (LSTM) networks with
1-3 recurrent layers and Convolutional Neural Networks (CNN) with 1-
6 convolutional layers, followed by a softmax layer and cross-entropy
training criterion. The frameworks used were TensorFlow [31] and
Keras [32].
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Table 1: Equal error rates (EER’s) for features extracted from different subbands from development set.

Frequency range [Hz] EER [%]
CQCC Cepstrum IMFCC MFCC LPCCres

16 – 8000 11.86 8.52 4.48 16.98 10.98
16 – 1000 42.56 38.48 35.69 27.48 20.60

1000 – 2000 47.03 38.98 42.19 41.05 9.60
2000 – 4000 42.26 39.60 36.99 38.30 9.77
4000 – 8000 7.23 5.27 3.16 16.18 6.22
6000 – 8000 5.13 3.38 4.16 16.76 6.37

Experiments with linear score fusion (using Bosaris toolkit
[33]) for multiple classifiers improved overall EER on training
and development data. However, different partitioning of devel-
opment set for multiple-fold fusion training induced high vari-
ation in weights and resulting performance. Since high over-
fitting and sensitivity to the chosen dataset for training was ob-
served, we decided not to apply such score fusion.

4. Results
Table 1 presents the EER results obtained for different features
in a variety of frequency sub-bands. All features were modelled
with the same GMM classifier described in Section 2.2. The 16
Hz limit resulted from dividing the sample rate by 210.

For CQCC and cepstrum features, we also performed the
analysis separately for each octave below 1 kHz, but none of
the sub-band results have reached less than 33% in terms of
EER. The difference between our result for the full-band CQCC
(the baseline), which amounted to EER=11.68%, and the result
reported by the organisers, namely EER=10.75%, is a conse-
quence of using a different classifier implementation.

In the full-band analysis, the best result of EER=4.48% was
achieved for the IMFCC, which is a feature that emphasizes
high frequencies. Compared to the baseline CQCC, it reduces
EER by 63%. Secondly, all features from Table 1 exhibit a
significant improvement in terms of the EER for 4−8 kHz sub-
band over the remaining sub-bands. The results for the high
frequency analysis of different features clearly outperform the
respective results for the full-band analysis. We conclude that
the spoofing analysed in the challenge should be detected more
effectively by the high-frequency countermeasures.

Let us discuss the EER results for the proposed LPCCres -
a new feature obtained by combining the full-band LPCC based
on the 35 LP filter coefficients with the sub-band cepstrum of
the residual signal. As can be seen, the results are consistent
and highly promising across different frequency bands, which
is a consequence of using broadband LP coefficients. Using
the LPCC, we were able to achieve the full-band EER=6.31%,
which is the 2nd result compared to other broadband features.
Furthermore, we tested LPC orders of 25, 30, and 40 and ob-
tained the following EER results: 7.78%, 7.22% and 7.18%;
hence significant improvements were not confirmed. The con-
catenation of full-band LPCC with the proposed LPCCres fea-
ture showed slight decrease of EER for the 4− 8 kHz band.

The outcome of the challenge evaluation is presented in Ta-
ble 2, where we compare the results obtained for the develop-
ment and evaluation datasets. As can be observed, the results
obtained in the evaluation are significantly worse than the ones
achieved on the development set.

In the following, we would like to briefly discuss whether
a spoof detection system based on the discussed feature set is
able to generalise to unseen data. We observe a 30% relative

Table 2: Comparison of the results obtained on development
(dev) and evaluation (eval) sets.

Features EER[%]
dev eval

CQCC (full-band) 11.86 24.57
CQCC (6-8 kHz) 5.13 17.31

Cepstrum (6-8 kHz) 3.38 22.24
LPCCres (6-8kHz) 6.37 27.61

reduction of the EER with regard to the baseline system just by
fine-tuning the input features. However, the difference between
the performance on the dev set (5.13% EER) and the eval set
(17.31% EER) is still substantial. It may be concluded that most
likely only a subset of the spoofed recordings was significantly
affected in the high-frequency sub-band. The reason behind this
may be that the assumed high-frequency artefacts actually are
not that severe in current devices. In addition, we believe that
the limited number of spoofing conditions in the development
set may have led to a strong over-fitting of the trained models,
and consequently led to the overall poor generalisation in the
evaluation.

Future work will focus on more detailed examination of the
proposed LPCCres features and investigation of their potential
using the published evaluation dataset. To this end, a new op-
timized spoofing-detection filter-bank design is required, opti-
mized sub-band LPC along with the presented sub-band LPC-
Cres features should be examined, and an a-posteriori optimiza-
tion of the most discriminative frequency analysis should be
performed.

5. Conclusions
We investigated spectral alterations introduced in the process of
replay spoofing and provided evidence that significant spoof-
ing cues related to a multiple anti-aliasing filtering can be
found at high frequencies. Several methods of high-frequency
fine-grained parametrisation were scrutinised. The fine-tuned
CQCC showed the strongest generalisation to unseen data, re-
ducing the EER by 30%. The proposed approach does not solve
the spoof detection problem completely, but it introduces a sig-
nificant improvement over the baseline CQCC-GMM system.
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