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Abstract
Knowledge about the dynamic shape of the vocal tract is the
basis of many speech production applications such as, articula-
tory analysis, modeling and synthesis. Vocal tract airway tissue
boundary segmentation in the mid-sagittal plane is necessary as
an initial step for extraction of the cross-sectional area function.
This segmentation problem is however challenging due to poor
resolution of real-time speech MRI, grainy noise and the rapidly
varying vocal tract shape. We present a novel approach to vo-
cal tract airway tissue boundary tracking by training a statistical
shape and appearance model for human vocal tract. We manu-
ally segment a set of vocal tract profiles and utilize a statistical
approach to train a shape and appearance model for the tract.
An active contour approach is employed to segment the airway
tissue boundaries of the vocal tract while restricting the curve
movement to the trained shape and appearance model. Then the
contours in subsequent frames are tracked using dense motion
estimation methods. Experimental evaluations over the mean
square error metric indicate significant improvements compared
to the state-of-the-art.
Index Terms: speech production, vocal tract, contour tracking

1. Introduction
Knowledge on the time-varying dynamic changes of the vocal
tract is the basis to understand the human speech production
system. In the discrete concatenated tube models of the vocal
tract, the resonance frequencies or, more generally, the transfer
function of the vocal tract are estimated from the cross sectional
area function of the tract. Knowing the time evolution of the
vocal tract transfer function implies the speech being produced.
Therefore the study of human vocal tract shape evolution could
play a significant role in many speech processing applications.

Intensive research has been conducted on segmentation of
the vocal tract (VT) airway tissue boundary. Among all of the
medical imaging technologies developed, attention toward the
MRI has been growing since MRI is safe for the subject and
can provide full mid-sagittal view images of the vocal tract as
well as a 3-D outlook.

Several parametric models have been constructed for the
vocal tract using X-ray and MRI images of the tract ([1],[2],[3]).
One of the first statistical models of the vocal tract was intro-
duced by [1] using 1000 mid-sagittal X-ray images of the vocal
tract. A semi-polar coordinate system for measuring the the lat-
eral outlines of the vocal tract was proposed by Maeda. The
hand-labeled contours extracted from the X-ray images were
projected onto the semi-polar grid system and the variation of
the contour points were analyzed using Principle Component
Analysis.

Bresch and Narayanan [4] presented a novel approach to
segmentation of upper airway real-time MRI in a frequency do-

main. Their algorithm uses an anatomically informed model for
the vocal tract, fitting to a new image through a gradient descent
optimization procedure. Despite the visually accurate results in
their paper, the algorithm’s computational complexity is so high
that it is impractical for real-time research.

A semi-automatic rapid VT airway tissue boundary seg-
mentation is proposed by Proctor [5]. In his work the image
intensity profile along Maeda’s gird line system is investigated.
A graph is constructed by connecting all the intensity profile
local minimas on all of the grid lines. The central airway path
through the tract is then estimated by finding the optimal path to
minimize a defined score through the constructed graph, using
the Dijkstra algorithm. The airway tissue boundary are esti-
mated by locating the first point on the grid lines on either side
of the center line crossing a threshold.

A rapid VT airway tissue boundary segmentation was pro-
posed by Kim et al. [6]. In this work, the image intensity profile
along Maeda’s gird line system [1] is investigated. A graph is
constructed by connecting all of the pixels on each grid line.
The central airway path through the tract is then estimated by
finding the optimal path to minimize a defined score through the
constructed graph using the Viterbi algorithm. The airway tis-
sue boundary is estimated by locating the first point on the grid
lines on either side of the center line crossing a threshold. This
algorithm suffers from a quite high run-time and the accuracy
of detecting the airway tissue boundaries, is directly dependent
on the accuracy of center-line estimation.

In this paper, we present a robust vocal tract airway tis-
sue boundary tracking for real-time MRI. For this purpose, the
USC-TIMIT database [7], which comprises mid-sagittal MRI
videos, is utilized. The traditional active contour models (ACM)
[8] and active shape models (ASM) [9] are used to detect the air-
way tissue boundaries of the vocal tract. We define a new snake
energy function to detect the airway tissue boundaries using the
trained shape and appearance models as well as other energy
terms for training imperfection compensation. An advantage of
using both ASM and ACM over using ACM only, as presented
in [10], is smaller tracking errors in the frames when articulator
occlusion occurs.

2. Methods
In this section, we present details of the statistical shape and
appearance models, as well as the the proposed airway tissue
boundary tracking algorithm.

2.1. VT shape model

Vocal tract shape can be considered as a prior information for
a generalized airway boundary tracking problem. Hence, we
define a shape model for the VT to utilize it as a prior in the
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tracking system.
The landmark points of each training image is stored as a

column vector:

X = [x1, x2, ..., xn, y1, y2, ..., yn]T . (1)

Assume that we have N such vectors Xj , which are generated
for various possible shapes of the VT and stacked in a 2n×N
matrix D as

D = [X1|X2|...|XN ] (2)

The vocal tract size and position in the recorded videos might
vary from one subject to another, therefore alignment of the
shapes into a common co-ordinate frame is necessary to elim-
inate the changes in the tract size and position. The popular
Procrustes method [11] is used for the alignment purpose.

Principal Component Analysis (PCA) is used to model the
distribution of the extracted aligned data by detecting the ma-
jor directions of variation. The variation around the mean is
described by the eigenvectors of the covariance of matrix D,
which can be computed as

X̄ =
1

N

N∑
i=1

Xi (3)

S =
1

N − 1

N∑
i=1

(Xi − X̄)(Xi − X̄)T (4)

Then the model can generate new shapes as

X = X̄ + Pb, (5)

where P = [P1|P2|...|Pt] contains t eigenvectors of the covari-
ance matrix S, corresponding to the t largest eigenvalues λi and
b is a t-dimentional model parameter vector, which is computed
as b = PT (X − X̄).

2.2. VT appearance model

We utilize image structure as a second prior for the tracking
problem. A statistical model is trained to model the image struc-
ture around the VT airway tissue boundaries. For the i-th train-
ing image and the j-th model point in the image, k pixels are
sampled on each side of the point along the normal, and the
normalized derivative image intensities at the sampled pixels
are stored in a 2k + 1 column vector gij as

gij = [gij,1, gij,2, ..., gij,2k+1]T (6)

For a model point vj the normalized derivative gray-level ma-
trix Gj is constructed from the gij vectors over all the training
images as

Gj = [g1j , g2j , . . . , gNj ]. (7)

As utilized for the shape model, a PCA analysis is carried out to
obtain a statistical model for each point vj by computing mean
(Ḡj) and covariance (Sgj) of the (2k + 1)-by-N matrix Gj .

The quality of fit of a new sample Gs to the model trained
for point vj is given by the Mahalanobis distance,

f(Gs) = (Gs − Ḡj)
TSg−1(Gs − Ḡj), (8)

which defines the distance from the sample to the mean model.
Note that the covariance matrix in the equation above might be
singular, i.e. not invertible. Matrix Sg can be factored using
eigenvalue decomposition to

Sg = QΛQT , (9)

where Q and Λ being the eigenvectors and eigenvalues of Sg ,
respectively. Then equation (8) can be rewritten as

f(Gs) = (Gs − Ḡj)
TQΛ−1QT (Gs − Ḡj). (10)

The projection of (Gs− Ḡj) onto all eigenvectors present in Q
is computes as

bg = QT (Gs − Ḡj). (11)

Note that bg is a 2k+1 column vector and Λ is a (2k+1)×(2k+
1) diagonal matrix with eigenvalues of Sg on the diagonal. By
inserting (11) into (10), the Mahalanobis distance can be written
as

f(Gs) = bTg Λ−1bg =

2k+1∑
i=1

b2g,i
λg,i

. (12)

For a new frame, given that an initial shape model is known,
ns pixels are sampled each side of the jth model point along the
normal. The 2ns + 1 points (including the current model point)
are the candidate locations where the model point can move to.
For each candidate point, a 2k + 1 pixel derivative gray-level
profile centered to that candidate point is computed along the
normal, and the quality of fit of each candidate location is com-
puted using (12). The point with highest quality of fit (minimum
Mahalanobis distance) will be the new position of the jth model
point.

2.3. VT contour detection and tracking

In the airway boundary tracking problem, an initial estimate of
the vocal tract contour is essential to fit the trained model to a
new image. For each MRI video to be segmented, we initial-
ize the lower and upper contours at the first frame and at the
upcoming frames an initial contour is predicted using the opti-
cal flow from the estimated contour at the previous frame, and
segmentation is performed automatically.

2.3.1. The proposed tracking algorithm

To estimate the VT airway-tissue boundaries, the initial predic-
tion of the contours are evolved iteratively by minimizing an
energy function, as defined in (13), at each frame. At each it-
eration dynamic programming (DP) is used to find a set of ver-
tices, which are globally minimizing the defined energy func-
tion over the contour. To have smoother curves, we interpo-
late the snake at each iteration with a cubic spline and sam-
ple equidistant points on the interpolated curve to represent the
smoothed contour. The contour is then transfered to the trained
shape model space to check the range of model parameters.

The proposed contour tracking algorithm is summarized in
the following steps:

1. DP to minimize the energy function.

2. Interpolation and smoothing.

3. Aligning the contour to the mean shape model.

4. Finding shape model parameter (b) and removing param-
eters beyond the allowed range.

5. Un-aligning the contour to the frame scale.

6. If not converged go to step 1. If converged go to next
step.

7. Predict next frame contour using optical flow and go to
step 1.
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2.3.2. The energy function

The curve evolution is executed by minimizing an energy de-
fined as

F (V ) =

n∑
j=1

(Emah(vj) + αEcon(vj) + γEedge(vj)... (13)

+δEmot(vj)),

where V = (v1, v2, ..., vn) is a set of points minimizing the
function F (), and Econ and Eedge are respectively the tradi-
tional snake continuity and external energy defined as

Econ(vj) = |d− ||vj+1 − vj |||2 (14)

Eedge(vj) = −|∇I(x, y)|2. (15)

Here d = 1
n

∑n
j=1 ||vj+1−vj || is the average distance between

all snake points and I(x, y) is the image intensity at pixel posi-
tion (x, y). Emah is the Mahalanobis distance energy defined
in (8), which moves the curve to the maximum trained appear-
ance model fit locations, andEmot is the motion energy tending
the points toward positions with a more reliable motion vector
estimation. Emot is defined as

Emot(vj) = ||vj − v̂j ||2, (16)

where v̂j = (vj + fj) + bj with fj being the forward motion
vector (from frame k to frame k + 1) at point vj and bj being
the backward motion vector (from frame k + 1 to frame k) at
point vj + fj , computed using the Lucas and Kanade method
[12].

3. Experimental evaluations
In our experimental evaluations, the USC-TIMIT database [7]
is used to train a shape and an appearance model for the VT
lower and upper contours. The database comprises mid-sagittal
MRI videos recorded at a frame rate of 23.13 frames/sec and a
spatial resolution of 68 × 68 pixels over 20 × 20 cm (approx-
imately 2.9 mm pixel width). To model the movements of the
vocal tract, the tract airway-tissue boundaries are manually ex-
tracted for a male and a female speaker, from a set of training
images. A set of landmark points are manually labeled on each
lower and upper tract profile for N training frames as shown in
Figure 1. The labeled data is used to train the shape and appear-
ance models.

In the labeling process, a total of 1400 frames are manually
segmented from four different speakers. Among them N =
1000 frames are used for the model training, and the remaining
400 frames are used to test performance of the proposed system.

The number of shape model parameters to explain different
portions of the variance in the training set is given in Table 1.
Figure 2 shows the deformation of the first four modes of varia-

Table 1: Number of shape model parameters required to cover
different portions of the training set variance.

92% 96% 98% 99%

Upper-profile 6 11 16 23
Lower-profile 7 13 21 29

tions from the mean shape for lower and upper VT contours by

frame = 40

Figure 1: Sample landmark points and the vocal tract contour
from manual segmentation.

Table 2: Values for the parameters used in the experiments.

Parameter Value

k 8
ns 5
α 0.6
γ 0.8
λ 0.2

varying the model parameters between 3 and 2 of their standard
deviation.

3.1. Tracking results

To evaluate the performance of the proposed tracking system, a
root mean squared error (RMSE) analysis is conducted for a set
of Maeda’s grid lines [1] over the sequence of test images. The
distance from a manually detected contours to the automatically
estimated ones is computed by finding the intersection points of
the grid line with both contours at any grid line. The manual
and automatic contours are interpolated with a cubic spline to
find the intersection points with a higher accuracy.

The error analysis is performed on test image sequence of
400 frames. For this purpose, two videos containing 50 frames
are selected for four speakers from the USC-TIMIT database.
The selected videos contain sentences with high variations in
the phones involving various constriction degree and locations
of the articulators also including resting frames.

The vocal tract is divided into three sub-regions and the
mean squared error is evaluated in each sub-region. Following
[6], the sub-regions are defined in a similar way as (1) grid lines
1-19 for pharyngeal region, (2) grid lines 20-72 for velar and
tongue region and (3) grid lines 73-92 for labial constriction re-
gion. The values of the parameters used in the experiments are
listed in Table 2.

Figure 3 plots RMSE comparison of the proposed method
with the baseline method in [6]. The RMSE results show that
the proposed algorithm performs with higher accuracy, spe-
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Figure 2: Samples from the first four PCA modes of the shape model.

Figure 3: Root mean squared error in the sub-region of the vocal tract.

cially in the tongue region which is the most dynamic articulator
in the vocal tract. The computed error in the pharyngeal region
is almost equal for both algorithms. The complex anatomy of
the epiglottis and the poor quality of MRI videos in the pha-
ryngeal region, are believed to be the reason of poor accuracy
in the epiglottis sub-region. Overall the proposed algorithm re-
duces the error in terms of RMSE as reported in Table 3.

4. Conclusions

In this paper we presented a robust contour tracking method
applied to human vocal tract airway tissue boundary detection
and tracking in a sequence of MRI images. A parametric shape
model is built for the vocal tract using statistical modeling. The
vocal tract is described with 21 or 16 control parameters in the
shape model for lower and upper profiles respectively. The tra-
ditional active shape models are used to extract the image inten-
sity variation around the vocal tract contours. The vocal tract
contours are then detected and tracked in a sequence of images
using the newly defined snake energy function. The experimen-

Table 3: RMSE for lower and upper boundary in different sub-
regions [pixel units].

Region Proposed method [6]

1-lower 2.26 2.29
1-upper 0.94 1.28

2-lower 0.61 1.57
2-upper 0.72 0.96

3-lower 1.11 1.73
3-upper 0.85 1.27

total-lower 1.06 1.58
total-upper 0.80 1.10

tal analysis shows the higher accuracy of the proposed algo-
rithm over the baseline methods in the root mean square error
metric.
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