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Abstract

This paper describes the keyword search system developed
by the STC team in the framework of OpenKWS 2016 eval-
uation. The acoustic modeling techniques included i-vectors
based speaker adaptation, multilingual speaker-dependent bot-
tleneck features, and a combination of feedforward and recur-
rent neural networks. To improve the language model, we
augmented the training data provided by the organizers with
texts generated by the character-level recurrent neural networks
trained on different data sets. This led to substantial reductions
in the out-of-vocabulary (OOV) and word error rates. The OOV
search problem was solved with the help of a novel approach
based on lattice generated phone posteriors and a highly op-
timized decoder. This approach outperformed familiar OOV
search implementations in terms of speed and demonstrated
comparable or better search quality.

The system was among the top three systems in the evalua-
tion.
Index Terms: keyword search, speech recognition, low-
resource, OpenKWS 2016, OOV search

1. Introduction
The problem of speech recognition for low-resource languages
has been receiving a lot of attention in recent years. This inter-
est was greatly facilitated by IARPA Babel program which “is
developing agile and robust speech recognition technology that
can be rapidly applied to any human language in order to pro-
vide effective search capability for analysts to efficiently pro-
cess massive amounts of real-world recorded speech” [1]. As
part of the program National Institute of Standards and Tech-
nology (NIST) organized annual OpenKWS evaluations from
2013 till 2016. The evaluation campaigns were accessible to all
speech recognition community members. In the beginning of
each evaluation NIST distributed a limited amount of language
resources among participants to prepare their technology. In the
final stage of each evaluation the participants were requested to
build a speech recognition system for a new (surprise) language
in several weeks.

In the OpenKWS 2016 the surprise language was Georgian
and the participants were provided with the training data with-
out the phonetic lexicon. Each team had to build a system, pro-
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cess the 75 hrs long evaluation set and submit keyword search
(KWS) and speech recognition results to NIST.

In this paper we describe the STC system that took part in
the evaluation. The main highlights are the acoustic part of the
system which consists of 9 acoustic models of different archi-
tectures, character level recurrent neural network (char-rnn) [2]
application to improve the language modeling part and a novel
approach to out-of-vocabulary (OOV) words detection problem.
All results in the paper are reported on Georgian language. We
use actual/maximum term weighted value ([A/M]TWV) and
word error rate (WER) to measure keyword search and speech
recognition quality respectively. Details on the metrics can be
found in [3].

The paper is organized as follows. Section 2 describes some
previous works devoted to the low-resource speech recognition
and keyword spotting. Sections 3 and 4 are about the acoustic
and language modeling components of the system respectively.
Keyword search and OOV handling techniques are covered in
Section 5. Section 6 describes the techniques used to combine
the results from the separate systems. The discussion and con-
clusions are in Section 7.

2. Related work
Previous work on speech recognition for low-resource lan-
guages has shown that the combination of different systems [4]
and multilingual bottleneck features [5, 6, 7] among other tech-
niques provide notable performance gains for keyword search.
In [8, 9, 10] very low WER values were obtained on Russian
and English conversational telephone speech recognition tasks
using speaker dependent bottleneck features, deep neural net-
works (DNN) and deep maxout networks (DMN) trained us-
ing annealed dropout regularization [11]. We decided to adapt
recipes developed in [8, 9, 10, 12] for multilingual training and
apply them to the OpenKWS 2016 task.

In [13] word-based recurrent neural network (RNN) was
used to generate more text in order to improve a language model
employed on the lattice generation phase. We had decided to
use character level neural network [2] for the same purpose and
obtained very good results with this approach.

The possible methods to perform keyword search are de-
scribed in [14], [15] and [16]. We report results on our imple-
mentation of [15] with some modifications. We also use word
and subword units on the lattice generation phase. Some previ-
ous work on subword units and their benefits for OOV search
can be found in [17], [18] and [19]. The new approach to OOV
words detection outlined in Section 5.2 is based on features rep-
resenting lattice posterior probabilities explained in [20], [21],
and [22].
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Figure 1: Bottleneck features and i-vectors extraction scheme

3. Acoustic Modeling
The in-house version of the Kaldi toolkit [23] that supports inte-
gration with our proprietary speech recognition training system
was used to train acoustic models.

3.1. Feature extraction

In order to utilize different representations of sound 3 sets
of raw features were used in our system, namely 40-
dimensional log mel filterbank energy (FBANK) features, 40-
dimensional mel frequency cepstral coefficients (MFCC), and
13-dimensional perceptual linear prediction (PLP) features. All
raw features were appended with pitch values.

In addition to these raw features, our system utilizes mul-
tilingual i-vectors and 3 types of high-level multilingual bottle-
neck features:

1. Deep Neural Network (DNN) based speaker-
independent 80-dimensional bottleneck (DNN-SIBN)
features extractor trained using 11xPLP+pitch+deltas
features.

2. DNN based speaker-dependent 80-dimensional bottle-
neck (DNN-SDBN) features extractor trained using
11xPLP+pitch+deltas features appended with i-vector.

3. DMN based speaker-dependent 80-dimensional bottle-
neck (DMN-SDBN) features extractor trained using
11xFBANK+pitch features appended with i-vector.

Extractor of 200-dimensional i-vectors was based on Universal
Background Model (UBM) with 2048 Gaussians. The extrac-
tion scheme of bottleneck features and i-vectors is presented
in Figure 1. All extractors were trained using build datasets
for 18 languages from the IARPA Babel Program language col-
lection (overall duration is 860 hours). DNN and DMN based
SDBN extractors were trained in multi-task style with language-
specific parts consisting of only softmax layer with about 5000
grapheme senones as outputs. DNN training was performed
with greedy layer-wise discriminative pretraining, DMN train-
ing was carried out using annealed dropout regularization tech-
nique [11] without pretraining. The other details of extractors
training procedure are omitted due to the lack of space, and be-
cause the procedure is quite similar to the SDBN approach pre-
sented in our previous papers [8, 9, 10, 12].

3.2. Acoustic models

Our system comprises 9 acoustic models trained to classify
grapheme senones. The models are briefly described below:

1. DNN1: 6x1024 sigmoidal DNN; 11x FMLLR-adapted
LDA-MLLT transformed PLP+pitch features; sequence
training with state-level Minimum Bayes Risk (sMBR)
criterion.

2. DNN2: 4x2048 sigmoidal DNN; 31x FMLLR-adapted
DNN-SDBN taking every 5th frame; sMBR sequence
training.

3. DMN3: 6x1536 DMN with maxout group size of 2;
31xDMN-SDBN taking every 5th frame; cross-entropy
(CE) training with annealed dropout regularization fol-
lowed by sMBR sequence training (see details in our pre-
vious paper [10]).

4. DMN4: the same as DMN3, but initialized with the
shared part of multilingual DMN (18 langs).

5. TDNN5: Time Delay Neural Network (TDNN) [24]
with 4x1024 ReLU layers; 5xMFCC+pitch appended
with i-vector; CE criterion.

6. BLSTM6: Bidirectional Long Short-Term Memory re-
current neural network (BLSTM) with projection lay-
ers [25]; 3x512(cell,hidden)x128(recurrent proj.,non-
recurrent proj.) hidden layers; 5xFBANK+pitch ap-
pended with i-vector; CE criterion.

7. DNN7: 6x1024 sigmoidal DNN; 11x PLP+pitch ap-
pended with i-vector; initialization with the shared part
of multilingual DNN (18 langs); CE criterion.

8. DMN8: 10x1024 DMN with maxout group size of 2;
11x FBANK+pitch appended with i-vector; initialization
with the shared part of multilingual DMN (18 langs); CE
training with annealed dropout regularization.

9. DMN9: the same as DMN8 with semi-supervised learn-
ing. 40 hours of untranscribed training data were rec-
ognized using the best acoustic model in terms of WER
(DMN3).

All models except the first one were trained with the use of
speed perturbed data [26] (two additional copies of the training
data were created by adjusting the speed by +-10% of the orig-
inal value). Performance of these models on the development
set in terms of WER and ATWV on in-vocabulary (IV) words
of the official development keywords list is reported in Table 1.
It should be noted that these results were obtained using the best
language model from section 4.

Table 1: Performance of acoustic models on the development
set. ATWV scores are reported for IV words of the official de-
velopment keywords list

Acoustic Model ATWV WER,%

DNN1 0.643 44.2
DNN2 0.634 41.5
DMN3 0.675 39.4
DMN4 0.660 44.3
TDNN5 0.658 42.3
BLSTM6 0.652 41.1
DNN7 0.669 43.0
DMN8 0.680 42.4
DMN9 0.685 41.8

4. Language modeling
The basic dataset used to build the lexicon and the language
model consisted of the acoustic training transcriptions. It
amounted to about 4.5 Mb of text and the observed OOV rate
on the development list was about 20%. In order to handle this
problem and hopefully increase the n-gram statistics quality, we
decided to augment the training set with artificially generated
texts produced by the character-level recurrent neural network
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(char-rnn). It was demonstrated [2] that char-rnn language mod-
els (LM) can be used to provide artificial texts that look quite
naturally with some minor inconsistencies.

To train and apply the model we used the open source char-
rnn tool [2] slightly patched to support UTF-8 input files. Our
model had 2 LSTM layers with 256 neurons each and was
trained with dropout rate of 0.3. Gradients were propagated
up to 200 steps backward in time. After training the model we
generated up to 100 artificial texts 1 million characters each.
We found that using lexicons of size 100–150K (only the most
frequent words were retained) can reduce the OOV rate on a
pre-selected development set more than twice compared to the
original lexicon.

The other source of extra data was the Web texts (about 380
Mb) provided by the organizers (BBN part). Overall we had
four datasets for LM training: basic dataset (baseline), the Web
texts, and two sets of artificial data. The last two sets were gen-
erated with two char-rnn models: CRNN1 and CRNN2. The
acoustic training transcriptions were included in the training
sets of both models and the latter also had seen some texts se-
lected by perplexity from the Web texts corpus. The LMs were
trained on each dataset separately and then interpolated. The
size of the lexicon for all the initial LMs was limited by 150K
words.

Table 2 shows OOV rates on the official development key-
word list and the values of WER and ATWV obtained with dif-
ferent LMs with the TDNN5 AM. It can be seen that extending
set of texts for training LMs reduces the OOV rate and improves
both WER and ATWV significantly1. Moreover, real and artifi-
cial texts seem to be complementary.

Table 2: Language models comparison on the development set
and the official development keywords list

LM OOV,% ATWV(ALL/IV) WER,%

Baseline 20.0 0.563 / 0.638 46.6
+CRNN1 9.3 0.614 / 0.653 43.7
+CRNN2 10.0 0.598 / 0.652 46.8
+Web 8.6 0.624 / 0.658 43.5
+CRNN1+Web 4.4 0.639 / 0.658 42.3

5. Keyword search and OOV Handling
5.1. Keyword search in confusion networks using proxies

In our keyword search implementation we used a word-level
confusion network (CN) [14] to index audio-data. The idea is
based on the proxies approach proposed in [15], where a special
WFST is constructed from a CN, and used to search for IV and
OOV words.

We applied several modifications to the original algorithm
([15]) in order to speed up the search process and to improve
the search quality. First, we construct WFST from CN in such
a way that all paths from the start node lead only to non-epsilon
arcs, and all paths to the final node pass through the non-epsilon
arcs only. This construction allows to skip the last (third) step
mentioned in [15], since no overlapping hits occur. Also this

1The modest results on Baseline+CRNN2 combination are ex-
plained by the presence of the predominantly non-conversational Web
data in the CRNN2 training set. This led to much lower interpolation
weight for CRNN2 LM. The weight was selected to optimize the inter-
polated model perplexity on the official development set.

speeds up the composition operation and reduces memory con-
sumption. Second, we use the same proxies approach for IV
search, as for OOV search, but without using phone confus-
ability transducer (phone-to-phone, P2P). This gives additional
terms to look for in lattices and thus helps to improve search
accuracy. Third, we apply pruning of the phone confusability
transducer (P2P). And finally, we prune the proxy word au-
tomaton (P2P composed with phone-to-word in [15] notation).
This procedure speeds up the query result extraction from the
outcome of the CN WFST composition with the proxy word
automation and increases efficiency of the sum-to-one normal-
ization. It was our main approach to search for IV words. For
OOV search we used it and a novel technique described in more
details below.

5.2. Decoder on high-level features for OOV search

The proposed approach to OOV search is based on using a mod-
ified Viterbi decoder working with the new type of high-level
features derived from speech recognition lattices.

Table 3: Comparison of the OOV search quality and speed for
the decoder and for the proxies-based approach on the STC-dev
list and different acoustic models

AM
MTWV
decoder

RTF
decoder

MTWV
proxies

RTF
proxies

DMN9 0.630 5.8e-05 0.528 0.0015
DMN8 0.615 5.8e-05 0.491 0.0017
DMN3 0.591 5.7e-05 0.512 0.0015

The extraction of the proposed features for audio files con-
sists in three major steps:

1. Perform speech recognition based on words or subword
units to produce the lattices.

2. Calculate phoneme posterior probabilities from
word/subword lattices with phoneme alignments.
Posterior probabilities are calculated using the forward-
backward algorithm ([20, 21, 22]).

3. Smooth the obtained probabilities. Smoothing is per-
formed by taking the weighted mean of a given feature
vector with a constant one obtained from the confusion
model which is trained in an unsupervised manner. This
step allows to improve the accuracy of OOV search, es-
pecially in the case of sparse lattices.

The smoothed features are passed to the decoder.
We experimented on the 10 hour development set with the

internal OOV keyword list. We found the list provided by the
organizers containing too little amount of OOV words so we
generated our own STC-dev list as prescribed in [27] with mi-
nor changes. The STC-dev list contained 742 OOV words.
The recognition lexicon contained subword units which are de-
scribed in Section 5.3.

The results in Table 3 show that the proposed approach
outperforms proxies-based implementations available to us in
terms of search quality and speed when applied on features de-
rived from lattice generated by a single ASR system. When
features are generated as a linear combination of posteriors de-
rived from the lattices produced by all 9 our acoustic models,
maximum attainable MTWV for proxies is slightly higher than
for the decoder. However, the decoder achieves much better
search quality when both approaches work with approximately
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Figure 2: The dependencies of MTWV against processing time
(RTF) for the OOV search decoder and the proxies-based ap-
proach on combination of lattices from the 9 systems

the same speed. The dependencies of MTWV against process-
ing time represented as real time factor (RTF) are depicted in
Figure 2.

Finally, the list-level combination of the two approaches
gives an additional improvement in search quality, as shown in
Table 5. The more detailed description of the OOV decoder is
given in [28].

5.3. Subword units

In order to build a subword lexicon we employed the Factor
toolkit (FTK) [29]. The allowed maximum unit length was 3
letters. We estimated frequencies of letter sequences on the
training transcriptions and BBN clean data, fed the statistics
to the FTK and trained the segmentation model on the acous-
tic training transcriptions only. The 4-gram subword language
model was trained on the training transcriptions converted to the
subword units.

Table 4: The OOV search results on word and subword units

Decoding units ATWV
dev STC-dev

words 0.398 0.281
subword units 0.541 0.575

In Table 4 results for different decoding units are presented.
subword units based system clearly outperforms the word based
analogue.

6. Systems combination
We used two system combination techniques: list-level and
lattice-level ones. The former is implemented in Kaldi toolkit
and was described in [30]. The latter is done by building a sin-
gle confusion network from the lattices belonging to different
systems and performing the search on it. Unlike list-level fu-
sion, one doesn’t have to run search for every system. When
building a CN we scale each lattice posterior probabilities with

weights obtained from the tuning procedure aimed to optimize
keyword search accuracy.

Table 5: Results for different system combination and OOV
search techniques. In the table ”prx” and ”dec” refer to key-
word search approaches described in Section 5.1 and Section
5.2 respectively

dev STC-dev

Fusion type ATWV(IV/OOV) ATWV(OOV)

1 prx lists 0.749/0.646 0.676
2 dec lists -/- 0.727
3 prx lattices -/- 0.711
4 dec lattices 0.581/0.666 0.688

1+4 lists 0.731/0.753 0.766
1+2 lists -/- 0.788
2+3 lists -/- 0.785

As can be seen from the Table 5, the best result is achieved
when the lists produced by different search techniques are com-
bined. The list-level and lattice-level combination techniques
do not seem to be complementary so we don’t present ATWV
obtained for 1+3 and 2+4 experiments in Table 5. Most fig-
ures in the table refer to our internal list because it contains
much more OOV words than the official one, and our primary
interest was to combine results from the different OOV search
approaches.

7. Discussion and Conclusions
As follows from Table 1 the fully connected DNNs with maxout
activations outperformed TDNN and BLSTM models, although
the latter provided significant contribution into the final fusion
result.

The language model used for lattice generation was built
with the use of text generated by a character-level RNN. Initially
we expected to reduce the OOV rate only, but the texts produced
proved to be beneficial for word level statistics estimation as
well. This may be attributed to the fact that Georgian is an
agglutinative language. We plan to explore this approach on
languages with different word generation patterns.

The OOV search approach introduced in Section 5.2 is
shown to vastly outperform proxies-based implementations
available to us in terms of processing speed while achieving
comparable or better search accuracy values. Combination of
the two approaches allows to increase ATWV of the whole sys-
tem by 8% in comparison with the best result between the two
approaches.

The presented system was among the top three systems in
the OpenKWS 2016 evaluation with ATWV score of 0.821.
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