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Abstract
Improved performance in speech applications using deep neu-
ral networks (DNNs) has come at the expense of reduced model
interpretability. For consumer applications this is not a prob-
lem; however, for health applications, clinicians must be able
to interpret why a predictive model made the decision that it
did. In this paper, we propose an interpretable model for objec-
tive assessment of dysarthric speech for speech therapy appli-
cations based on DNNs. Our model aims to predict a general
impression of the severity of the speech disorder; however, in-
stead of directly generating a severity prediction from a high-
dimensional input acoustic feature space, we add an interme-
diate interpretable layer that acts as a bottle-neck feature ex-
tractor and constrains the solution space of the DNNs. During
inference, the model provides an estimate of severity at the out-
put of the network and a set of explanatory features from the
intermediate layer of the network that explain the final deci-
sion. We evaluate the performance of the model on a dysarthric
speech dataset and show that the proposed model provides an
interpretable output that is highly correlated with the subjective
evaluation of Speech-Language Pathologists (SLPs).

Index Terms: dysarthric speech, objective assessment, model
interpretability, deep neural networks

1. Introduction
There has been a recent trend of applying machine learning
techniques, especially those based on deep neural networks
(DNNs), to different applications. In most cases, the goal is
improving performance; however, in some applications, it is
also important to understand why an algorithm made the de-
cision that it did. This is critical in medical applications where
clinicians must know whether they can trust the prediction of
a machine learning model if they are to make decisions based
upon it [1][2]. To answer this question the model should pro-
vide the end-user with a final prediction and an “explanation”
rather than simply operating as a black-box.

Interpretability is context-specific. We focus on an appli-
cation area of recent interest to the speech community: ob-
jective assessment of dysarthric speech [3]. Objective assess-
ment of dysarthric speech complements subjective assessment
in speech therapy. It can be used to detect early signs of neuro-
logical disorder[4], and track progress resulting from behavioral
or pharmacological intervention. The principal goal of objective
assessment is to estimate the perceived severity or intelligibil-
ity of dysarthric speech. This is usually done by a data-driven
model trained on collected speech samples and labels from clin-
ical experts. Most of current objective assessment systems ei-
ther focus on more sensitive acoustic features that can better

represent the underlying pathology or more advanced machine
learning models that can learn a better mapping from the acous-
tic features to the label [5][6][7][8][9]. However, most current
systems are not amenable to interpretation because of the high-
dimensional and non-intuitive input feature space. For exam-
ple, the openSMILE toolbox [10] provides extraction of several
thousand features and was used as the baseline system for the
Interspeech 2015 Parkinson’s disease challenge [3]. However,
most of the input features are difficult to explain in terms that
a clinician may understand (e.g. by relating them to the typical
speech symptoms of Parkinson’s disease).

There has been recent interest in interpretable and explain-
able models in the artificial intelligence community. For ex-
ample, in [1] the authors propose a locally approximated linear
model to interpret any classifiers used for image recognition and
text classification. In [11], a novel loss function is proposed to
jointly predict the label of an image and give a sentence describ-
ing the prediction. In [12] the authors propose a recommender
system that simultaneously trains a latent factor model for rat-
ing prediction and a topic model for product reviews. The re-
views can be used to justify the predicted rating. It is not a
coincidence that most of these previous studies focus on com-
puter vision and natural language processing applications since
the input feature spaces for both domains are interpretable to
most end-users (pixels and words). Speech is an especially dif-
ficult case since the input features that seem to work well in dif-
ferent applications (e.g. Mel-Frequency Cepstral Coefficients
(MFCC)) are only understood by experts in the field. Our pre-
vious work investigates the relationship between ASR perfor-
mance and interpretable perceptual disturbances of dysarthric
speech and serves as a starting point for the way we define in-
terpretability in this paper [13].

In this paper, we propose a new method for interpretable
objective assessment of dysarthric speech. Our model is based
on DNNs and aims to predict a general impression of the sever-
ity of dysarthric speech. Instead of directly mapping the input
acoustic features to a target of interest (e.g. severity), we pro-
pose to insert an intermediate layer in the DNNs. This inter-
mediate layer is composed of nodes that can be used to explain
the final severity decision. The motivation behind this model
is the seminal work of Darley, Aronson and Brown (hereafter,
DAB) who proposed a prescriptive methodology for the diag-
nosis of dysarthric speech [14]. In their paper, they identified
38 perceptual dimensions of speech that clinicians should sub-
jectively assess when making a final decision regarding diag-
nosis. We summarize these dimensions and force our model to
learn the final target (severity) and an intermediate DAB repre-
sentation interpretable to most clinicians that work with patho-
logical speech. In addition to providing interpretation of the
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Figure 1: A notional DNNs for objective assessment of
dysarthric speech.

final output, the intermediate layer also acts as a bottle-neck
feature extractor and constrains the solution space of the DNNs
by training the DNNs with supervision at both the output layer
and the DAB layer. During inference, the model provides an
estimate of severity at the output of the network and a set of
explanatory features from the DAB layer that aim to justify the
final severity decision. The idea of adding an intermediate layer
to DNNs has been applied to both ASR and image recognition
[15][16][17][18]. However, in these previous studies the added
intermediate layer was not interpretable but was used to regular-
ize the network. Our idea of using the DAB layer is also related
to hierarchical classifiers for image recognition [19], where the
goal is to achieve a trade-off between classification accuracy
and specificity.

In the remainder of this paper, we define interpretability for
our application, describe the proposed network and two train-
ing schemes, and evaluate the performance of the model on a
dysarthric speech dataset. The results show that the proposed
model provides an interpretable output that is highly correlated
with the subjective evaluation of SLPs.

2. Defining Interpretability
When evaluating dysarthric speech, clinicians use the DAB
criteria. The 38 perceptual dimensions defined in [14] can
be broadly categorized into four groups: perceptual symp-
toms of atypical nasality, vocal quality, articulatory precision
and prosody. Clinicians evaluate speech along some subset of
the DAB perceptual dimensions on a 7-point scale (typical to
severely atypical). The DAB dimensions are clearly understood
by both speech-language pathologists and neurologists and we
posit that they serve as a good way to define interpretability
in this domain. We propose to integrate the DAB perceptual
dimensions in an interpretable layer of the DNNs and to jointly
train the model using labels at the output layer for the task of in-
terest (severity in our example) and labels for the interpretable
layer. We limit the number of perceptual dimensions to the 4
broad dimensions listed above instead of the more elemental 38
perceptual dimensions.

3. Proposed model
Let us assume that there are n speech utterances with labels pro-
vided by clinicians at the speaker level. Those labels include a
general severity rating (the network output) and ratings on the
four perceptual dimensions we use to interpret the prediction of
severity. After feature extraction we have a feature matrix, X,
with dimensions n × d where d is the dimension of the feature
vector. We also have a scalar severity label vector y for each in-
stance and a matrix interpretable layer label, yI, with dimension
n× 4 representing the labels of the four perceptual dimensions.

X y

yI

W1 W2

Figure 2: The proposed interpretable DNN architecture for ob-
jective assessment of dysarthric speech. The layer with blue
nodes is the interpretable Darley-Aronson-Brown layer.

While the task of interest is severity prediction in this paper,
this framework is easily extensible to other tasks (e.g. classify-
ing based on disease instead of predicting severity).

3.1. DNNs architecture

The relationship between the input feature space and the final
severity prediction is a complex one. For example, a dysarthric
speaker can be severe because of atypical prosody or poor ar-
ticulatory precision. DNNs are suitable to learn this complex
mapping from the speech acoustics to the final prediction. To
improve the interpretability of a notional DNN for predicting
severity (e.g. see example in Fig. 1), we propose to add an in-
termediate layer before the final output as shown in Fig. 2. The
different nodes in the DAB layer are trained to learn the labels
for nasality, vocal quality, articulatory precision and prosody
respectively. The DAB layer acts as an information-flow bot-
tleneck and constrains the intermediate representation of the
model in a way that clinicians can understand. This way, the
end-user can backtrack from the model output by analyzing the
output of the interpretable layer to gain additional insight into
why the model made the final prediction that it did. In addition
to providing an intermediate representation the clinician can un-
derstand, the new layer also acts as a regularizer that constrains
the solution space of the DNN in order to prevent overfitting for
small sample sizes.

3.2. DNNs training

In this section, we present two training strategies for our pro-
posed model in Fig. 2. The two models either learn the weights
of the network independently or jointly.

3.2.1. Sequential training

To train our proposed model, one strategy is to first train a net-
work to predict the DAB representations with label yI and then
train the remaining network to predict the final severity label
with the output of the first network as the input of the second
network. If we denote the weights prior to the interpretable
layer by W1 and the weights following the interpretable layer
by W2, then we define two cost functions and optimize them
sequentially:

W∗
1 = argmin

W1

1

n

n∑

i=1

∥∥∥∥
ˆ

y
(i)
I (W1)− y

(i)
I
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2

, (1)

W∗
2 = argmin

W2

1

n

n∑

i=1

(ŷ(i)(W2)− y(i))2, (2)
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where
ˆ

y
(i)
I and ŷ(i) are the output of the interpretable layer and

output layer of the ith sample respectively.

3.2.2. Joint training

A different strategy is to concatenate the two networks and to
jointly train both sets of model parameters, W1 and W2. The
new objective function is

W∗
1 ,W

∗
2 = argmin

W1,W2

(1− λ)
1

n

n∑
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ˆ

y
(i)
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(i)
I
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2

2

)+

λ
1

n

n∑

i=1

(ŷ(i)(W2)− y(i))2.

(3)
The parameter λ controls the tradeoff between the two parts of
the objective function. If λ = 1, the proposed model does not
consider interpretability and if λ = 0, the proposed model gives
up on predicting severity and only focuses on predicting the four
perceptual dimensions in the DAB layer. We vary λ to balance
between model interpretability and the final prediction.

4. Experimental results
4.1. Dataset and feature extraction

Our data set was collected in the Motor Speech Disorders Lab
at ASU. There are 87 speakers in this data set with four dif-
ferent dysarthria subtypes: ataxic dysarthria secondary to cere-
bellar degeneration (n = 16), mixed flaccid-spastic dysarthria
secondary to amyotrophic lateral sclerosis (n = 15), hyperki-
netic dysarthria secondary to Huntington’s disease (n = 7), hy-
pokinetic dysarthria secondary to Parkinson’s disease (n = 41)
and 8 healthy speakers. Each speaker read stimuli from visual
prompts presented on a computer screen. Speech materials in-
cluded 81 short phrases and 5 sentences [20, 21]. Fifteen master
students from the ASU SLP program were asked to rate each
subject on four perceptual dimensions: nasality, vocal quality,
articulatory precision and prosody and then give a general im-
pression of the severity of each patient (healthy speakers not
included) based on their produced speech on a 1-7 (typical-
severely atypical) scale. To integrate the ratings by multiple
raters, we split the 15 raters into two sets - one set was used to
train the model, the other set was used to test the model. For
each of the two groups, we used the Evaluator Weighted Esti-
mator (EWE) [22] to combine the multiple ratings into a single
set of ratings by calculating the mean value weighted by indi-
vidual reliability. The severity labels of healthy speakers were
assigned as 1.

To increase the number of samples for DNNs training, we
performed data augmentation on the original clean recorded
speech materials. Two types of noise (meeting and office) 1

and two room impulse responses 2 were added to clean speech
signals at two signal-to-noise ratios (5dB and 10dB) to simu-
late different environments. This results in over 50,000 speech
utterances. The label scalar y and the label vector yI for each ut-
terance were the severity label and labels of the four perceptual
dimensions of the speaker who produced this utterance. Since
the variability of utterance durations of each speaker is small,
we consider this one to multiple label assignment strategy reli-
able.

1http://parole.loria.fr/DEMAND/
2http://reverb2014.dereverberation.com/

Table 1: Model performance for severity prediction. The best
performance is denoted by bold numbers for each row.

Baseline Sequential Joint

PCC 0.821 0.811 0.826
SCC 0.807 0.799 0.814
MAE 0.729 0.709 0.678

Before feature extraction, speech samples were downsam-
pled to 16kHz. Long-term speech features were extracted from
the speech utterances, including: the envelope modulation spec-
trum [23], a representation of the slow amplitude modulations
in a signal and the distribution of energy in the amplitude fluctu-
ations across designated frequencies, captures rhythm informa-
tion in the speech signal; The long-term average spectrum fea-
tures and MFCC statistics [24] capture atypical average spectral
information in the signal; Dysphonia features capture a patients’
ability to control glottal movement; Correlation structure fea-
tures [25, 6] that capture the evolution of vocal tract shape and
dynamics at different time scale via auto- and cross- correlation
analysis of formant tracks and MFCC. The feature dimension
was 1201.

4.2. Model evaluation

We used speaker-level 5-fold cross validation (CV) to evaluate
the performance of the different models. For each fold, 80% of
the speakers were used for training the model and the remain-
ing 20% speakers were used for evaluation. We further took
2000 utterances out from the training data as a validation set to
monitor the training process and to tune the experimental set-
tings. The severity prediction of the speakers in the evaluation
set were calculated for only the clean speech samples. After
predicting the severity of each speaker, we calculated the Pear-
son correlation coefficients (PCC, higher is better), Spearman
correlation coefficients (SCC, higher is better) and the mean
absolute error (MAE, lower is better) between the predicted rat-
ings and ground-truth labels of dysarthric speakers. Tensorflow
was used to construct and train the different DNNs architectures
[26].

First, our baseline model was built using the architecture
shown in Fig. 1. This model learns the direct mapping from
the input acoustic features to severity without considering in-
terpretability. This is a regression task and the cost function is
the mean squared error (MSE) between the predicted severity
rating and the ground-truth severity label. There were four hid-
den layers with 256 nodes per layer. The activation function
was rectified linear unit (ReLU) for the hidden layers and linear
for the output layer. The batch size was 256. Stochastic gra-
dient descent (SGD) was used for optimization. The learning
rate was set to 0.02 and exponentially decayed every 200 steps
with a base of 0.8. The number of epochs was 30. All weight
matrices were initialized using normal distribution with 0 mean
and 0.01 standard deviation. Input acoustic features were zero-
scored using the calculated mean and standard deviation from
the training samples in each fold.

In our proposed model, we added the DAB layer before the
output layer. Specifically, we replaced the output layer with the
DAB layer. Then, we added one more hidden layer followed by
the output layer as shown in Fig. 2. The network architecture
before the DAB layer was identical to the baseline model. The
number of nodes in the last hidden layer was set to 16. The ac-
tivation function was ReLU for all hidden layers except for the
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Table 2: Performance of the two training strategies of the interpretable model on the four perceptual dimensions in the DAB layer.

Nasality Vocal quality Articulatory Precision Prosody

Sequential Joint Sequential Joint Sequential Joint Sequential Joint

PCC 0.739 0.749 0.705 0.735 0.808 0.816 0.781 0.788

SCC 0.708 0.727 0.684 0.709 0.778 0.786 0.756 0.771

MAE 1.149 1.149 0.823 0.798 0.782 0.748 0.963 0.942

DAB layer and the output layer (linear for both). As mentioned
in section 3, the first strategy to train this model was sequential
training. For training the parameters before the DAB layer, we
used the same experimental settings as the baseline model. Af-
ter training, the model parameters were saved and fixed. During
the 2nd training phase, only the remaining network parameters
(those after the interpretable layer) were updated. In the 2nd
training phase, we used a smaller learning rate (0.001 with the
same decay rate) and only ran 10 epochs.

Next, we also validated our proposed model using the
joint training procedure, in which all network parameters were
jointly optimized. Experimental settings were the same with
the baseline model. The only difference was that the objective
function here had two parts as shown in eqn. 3. We varied λ
from 0.1 to 0.9 with a step size of 0.2 to empirically evaluate
the model performance as a function of λ. We skipped the two
extreme cases (λ = 0 and λ = 1) because either predictive
ability or model interpretability was lost.

4.3. Results analysis

Note that all of the results are the average of five Monte Carlo
trials. We first analyze at the performance of three different
methods that predict the severity of each speaker. The three
measurements of the final severity prediction using three differ-
ent methods are shown in table 1. The results of joint training
are presented for the optimal λ. As the table shows, we see that
the sequential training procedure of the interpretable DNN re-
sults in a slightly lower PCC and SCC when compared against
the baseline; but the MAE is also lower. As expected, the joint
training strategy yields the best performance in terms of all three
measurements and provides the best predictive ability.

In addition to predicting the final severity output, we also
ensure that the proposed model yields reasonable interpretations
by providing good predictions of the other four perceptual di-
mensions used in the DAB layer of the network. In table 2, we
use the same metrics to evaluate the proposed models on the
four perceptual dimensions. The baseline model is not included
since it does not provide a prediction for these dimensions. The
results of joint training are shown for the optimal λ. As be-
fore, the joint training procedure results in reduced MAE and
increased PCC and SCC in general. A possible reason for this
is that the joint prediction has the benefit of regularizing the
model in a manner similar to transfer learning, or multi-task
learning. It is clear that the perceptual dimensions are somehow
related to the final severity rating. By forcing the model to learn
the dimensions and final severity rating together, this constrains
the solution space of the parameter set and the result is a lower
overall error. As the table shows, the nasality dimension pro-
vides the highest MAE; however this is also the most difficult
dimension to label by experts as well.

Next, we show how the performance of joint training model
varies with λ in Fig. 3. Here we only show the severity predic-
tion results since the interpretation dimensions follow a similar
trend. Along the x-axis, we vary lambda from 0.1 to 0.9 with
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Figure 3: Performance of the joint training DNN for varying λ.

a step size of 0.2. The y-axis on the left is the MAE and the
y-axis on the right is the PCC and SCC. We find that the high-
est performance is achieved for λ = 0.7. Increasing λ past 0.7
results in a rapid decline in performance since, when λ ≈ 1, the
supervision information in the DAB layer provides little regu-
larization and the interpretable layer does not accurately model
the DAB dimensions. Correlation-based measurements follow
the same trend as the MAE.

5. Conclusion
In this paper we propose an interpretable objective severity as-
sessment algorithm of dysarthric speech based on DNNs. An
intermediate DAB layer with a representation understood by
speech language pathologists and neurologists is added to the
DNN. The model is trained with a scalar severity label at the
output of the network and intermediate labels that describe how
atypical the speech is along four perceptual dimensions in the
DAB layer. We investigate two strategies to train the proposed
model: sequential training and joint training. We compare the
proposed model with a baseline DNN that does not account for
model interpretability. Experimental results demonstrate that
using the proposed joint training our model can both provide
better prediction accuracy and interpretability compared to se-
quential training and a baseline model.

In future, we will explore additional prediction tasks be-
yond severity estimation. For example, disease diagnosis based
on speech analytics is an area of great interest currently; it
would be useful for a diagnostic DNN to also provide an inter-
mediate representation (perhaps one based on the DAB dimen-
sions) so that clinicians can gain additional insight into why the
DNN made the decision that it did. For more complicated tasks,
additional interpretable nodes in the DAB layer can be added to
improve both model performance and interpretability.
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