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Abstract
For an automatic speech recognition system to produce sensi-
bly formatted, readable output, the spoken-form token sequence
produced by the core speech recognizer must be converted to a
written-form string. This process is known as inverse text nor-
malization (ITN). Here we present a mostly data-driven ITN
system that leverages a set of simple rules and a few hand-
crafted grammars to cast ITN as a labeling problem. To this
labeling problem, we apply a compact bi-directional LSTM. We
show that the approach performs well using practical amounts
of training data.
Index Terms: speech recognition, inverse text normalization,
LSTM

1. Introduction
Inverse text normalization (ITN) is the process of taking a to-
ken sequence in spoken form produced by an automatic speech
recognizer and converting it to a written form suitable for pre-
sentation to users and processing by downstream components.
The entities requiring significant transformation to go from spo-
ken form to written form include cardinals and ordinals as well
as more complex items like dates, times and addresses. In [1]
the written forms of such entities are called non-standard words
(NSWs) and an NSW taxonomy is provided. Table 1 presents
some examples of spoken-form input and written-form output
typical of what we see in our system.

There has been little work published that directly addresses
the ITN problem. Exceptions include [2, 3, 4]. In [3], hand-
crafted grammars are used to over-generate written-form hy-
potheses based on the spoken-form token sequence. A class
language model (LM) is applied to choose the most likely
written-form hypothesis. In [4], the automatic speech recogni-
tion (ASR) LM is built in the written domain. A finite-state ver-
balization model, built from hand-crafted grammars, is used to
transform the written form into spoken-form token sequences.
The written domain LM and verbalization model are combined
to create the ASR decoding graph. ITN is built into the decod-

Table 1: Examples of spoken-form input and desired written-
form output.
Spoken Form Written Form
one forty one Dorchester Avenue
Salem Massachusetts

141 Dorchester Ave., Salem, MA

set an alarm for five thirty p.m. Set an alarm for 5:30 PM
add an appointment on September
sixteenth twenty seventeen

Add an appointment on September
16, 2017

twenty percent of fifteen dollars
seventy three

20% of $15.73

what is two hundred seven point
three plus six

What is 207.3+6

ing graph in [2] as well.
There has also been relevant work on related tasks, includ-

ing the inverse of the problem addressed here, text normaliza-
tion (TN). In [1], TN is formulated as a multistage process in-
cluding stages to segment written-form input, tag the segments
and transform the tagged segments into spoken-from output.
Various techniques are explored for each stage. In [5], statis-
tical machine translation (SMT) techniques are applied to TN.
In [6], various RNN architectures including an attention-based
sequence-to-sequence model, are applied. In [7] SMT tech-
niques are applied to the task of speaking-style transformation,
and in [8], a phrase-based SMT model is used to transform SMS
messages into more conventional written-form output. In [9], a
method is presented to format and error-correct ASR transcrip-
tions using a probabilistic model to determine when automati-
cally learned 1-to-n replacements should be applied.

In addition to at least partly data-driven approaches, it is
possible to build an effective ITN system entirely from hand-
crafted rules. The reference system in this work is one such
system.

The approach we present here uses simple hand-crafted rule
tables and a few hand-crafted grammars to cast ITN as a label-
ing problem. To the labeling problem, we apply a bi-directional
long short-term memory (LSTM) neural network, motivated by
the fact that LSTMs have proven highly effective in a variety of
similar tasks [10, 11, 12, 13, 14].

Compared to entirely rule-based systems, our approach
has a few advantages. First, system behavior can be changed
through modification of the training data, which requires less
specialized knowledge than writing rules. Second, our approach
has the potential to learn transformations that occur in varied
contexts, which may be difficult to express as rules. Finally, rea-
sonably accurate rule-based systems require building and main-
taining large, complex language-specific rule files. In our ap-
proach, the language-specific configuration files and grammars
are relatively small and simple. In contrast to [4], where ITN
functionality is built into the decoding graph, our approach has
the practical benefit of maintaining the boundary between the
language modeling and ITN components.

Our approach is perhaps most conceptually similar to [3].
That too is a hybrid approach using both hand-crafted grammars
and a statistical model. There the form of the statistical compo-
nent is a class N-gram. At a high level, the approach we present
here uses simpler grammars and a more powerful and compact
statistical model. We should also note that [3] assumed that spo-
ken form/written form pairs were not available for training, and
so they relied entirely on written-form data to train their system.
In this work, we make the assumption that spoken form/written
form training data is available.

We could have chosen to apply a more general attention-
based sequence-to-sequence model, as [6] evaluates for TN.
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However, as pointed out in that work, the space of potential
errors that such a model can make is quite large, and egregious
errors can fundamentally change the meaning of the output. In
addition, the much simpler model underlying our approach is
likely to be less data hungry, faster to train and faster to run
inference on.

The remainder of this paper is organized as follows: We
describe the details of our approach and model in Sections 2
and 3. Section 4 presents experiments and results.

2. Approach
We first make the observations that (1) in nearly all of the trans-
formations made by ITN, there is an obvious correspondence
between spoken-form tokens and segments of the written-form
output, and (2) the written-form segments will usually be in the
same order as their corresponding spoken-form tokens.

Motivated by those observations, we formulate the trans-
formation from spoken form to written form as the following
three step process. In the first step, a label is assigned to each
spoken-form token. The label specifies a series of edits to per-
form to the token string to get its corresponding segment in the
written-form output string. In the second step, for each token, in
order, the edits specified by the label are applied and the results
concatenated. Finally, post-processing grammars are applied
to regions tagged in the second step. Table 2 gives an exam-
ple of the intermediate and final outputs of this process for two
spoken-form token sequences.

2.1. Label Definition

Each label has six fields:

• Rewrite: Indicates the string, if any, that replaces the
token string. The default value represents leaving the
token string unmodified. Built-in options include Capi-
talize and Downcase.

• Prepend: Indicates the string, if any, that should be
prepended to the token string. The default value repre-
sents prepending nothing.

• Append: Indicates the string, if any, that should be ap-
pended to the token string. The default value represents
appending nothing.

• Space: Indicates whether or not a space should be placed
before the token string. The default value represents
putting a space before the string.

• Post Start: Indicates whether the token represents the
start of a region where a post-processing grammar should
be applied. If so, specifies the post-processing grammar
to apply.

• Post End: Indicates whether the token represents the end
of a region where a post-processing grammar should be
applied. If so, specifies the post-processing grammar to
apply.

We construct a finite-state transducer (FST) for each option
for each field. To apply a label to the spoken-form token string,
the corresponding FSTs are applied in sequence. The FSTs are
constructed from Thrax [15] grammars. These include gram-
mars for built-in options (e.g. the Capitalize rewrite option) as
well as configurable grammars. Configurable Thrax grammars
are automatically generated from tables. Table 3 shows excerpts
from the rewrite table, and Table 4 is the append table.

2.2. Post Processing

For most transformations, label application is sufficient to pro-
duce the final written-form output. (See the first example in Ta-
ble 2.) For the few phenomena that cannot be handled this way,
we have a mechanism for applying post-processing grammars.
When one of these grammars is to be used, label application
will tag a region as requiring post processing, based on the Post
Start and Post End fields. The appropriate grammar will then
be applied to the region. Post-processing grammars are written
in Thrax and compiled into FSTs.

In the systems we present here, we use post-processing
grammars for currency expressions, relative time expressions
and roman numerals. Currency grammars handle the re-
ordering of the currency amount and the currency symbol, as
shown in the second example in Table 2. The relative time ex-
pression grammar is used for spoken-form token sequences like
“ten minutes to four”, which must produce the written-form out-
put “3:50”. Although roman numeral formatting could theoret-
ically be accomplished with the labeling mechanism, we use
post-processing grammars, as it is straightforward to create a
language-independent grammar converting cardinal numbers to
roman numerals.

2.3. Label Inference

Our training data consists of spoken form/written form pairs.
However, to train our model, we need spoken form/label se-
quence pairs. We use an FST-based approach to infer label se-
quences from spoken form/written form pairs. To support this
process, we construct the following FSTs:

• E: An expander FST, which takes as its input a spoken-
form token sequence and produces outputs where each
token in the sequence has been prepended with every
possible label.

• Af : For each label field, f , an applier FST that takes a
spoken-form token sequence with prepended labels and
applies the action indicated by that field in each token’s
prepended label. Constructed from the FSTs built for the
field options.

• R: A renderer FST, which takes as its input a sequence
of processed tokens with labels prepended and strips the
labels to produce written-form output, possibly with re-
gions tagged for post-processing.

• P : A post-processor FST, which applies appropriate
post-processing grammars to tagged regions and re-
moves the tags. Constructed from the post-processing
grammar FSTs.

To get the compatible set of spoken-form token sequences
with prepended labels for a spoken form/written form pair, we
perform the following sequence of operations, where S and W
are FSTs constructed from the spoken-form token sequence and
written-form output string. The Projin operation copies each
arc’s input label to its output label, while Projout does the op-
posite.

Sexp = Projout(S ◦ E)
Wproc = Sexp ◦ARewrite ◦ ... ◦APostEnd

Slabeled = Projin(Wproc ◦R ◦ P ◦W )
(1)

From Slabeled, we can easily extract label sequences. For
a vast majority of utterances (over 99% in our data), Slabeled

will consist of a single path. For those cases where it does not,
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Table 2: Two spoken-form token sequences with corresponding labels, output after label application and final written-form output after
application of post-processing grammars.

Spoken Form Label After Label Written FormRewrite Prepend Append Space Post Start Post End Application
February - - - - - - February February
twentieth OrdinalAsCardinalDecade - Comma - - - 20, 20,
twenty CardinalDecade - - - - - 20 20

seventeen CardinalTeen - - No - - 17 17
twenty CardinalDecade - - - - - 20 20
percent PercentSign - - No - - % %

of - - - - - - of of
two Cardinal - - - MajorCurrency - <MajorCurrency> 2

hundred MagnitudePop1 - - No - - 0
five Cardinal - - No - - 5

dollars CurrencySymbol - No - - MajorCurrency $ <\MajorCurrency> $205

Table 3: Excerpts from the rewrite table.
Option Spoken Form Written Form

...
Cardinal one 1
Cardinal two 2

...
Magnitude hundred 00
MagnitudePop1 hundred 0

...
MagnitudePop1 million 000,00
MagnitudePop2 million 000,0

...
AbbreviateMeasure pounds lbs.
AbbreviateMeasure zettabytes ZB

...
CurrencySymbol pounds £

...

Table 4: The append table.

Option String
Period .
Comma ,
Colon :
Hyphen -
Slash /
Square ²
Cube ³

we choose the label sequence given the highest score by a label
sequence bi-gram. The label sequence bi-gram is trained on a
subset of the training utterances where Slabeled had only one
path.

3. Modeling
3.1. Structure

Given the task formulation, the modeling problem is reduced
to labeling a sequence of tokens. To this problem, we ap-
ply a bi-directional LSTM [16, 17]. The input to the LSTM
for a spoken-form token is computed by summing a linearly-
projected token embedding with linearly-projected feature em-
beddings for all active features. The output of the LSTM is
fed into a multi-layer perceptron (MLP) followed by a softmax
layer with an output target for each label.

3.2. Features

Input features are binary and of two types: token lexical features
and features derived from the rewrite table. We have a single
lexical feature, which indicates whether the first letter of the
token string is capitalized. This helps to determine when the
Capitalize rewrite needs to apply. It also allows information to

be propagated from the LM about, for example, which tokens
are likely proper nouns. Note that the value for this feature is
determined at run time, and thus it is informative even for words
not in the input vocabulary.

Features derived from the rewrite table are based on which
rewrite options can apply to a token. For example, looking at
Table 3, “pounds” and “zettabytes” will both have an active fea-
ture corresponding to the AbbreviateMeasure option. “pounds”
will also have an active feature corresponding to the Curren-
cySymbol option. These features are intended to help the model
to predict the correct label even for infrequent tokens.

4. Experiments and Results
4.1. Data and Evaluation Criteria

We will present results using data from an English virtual as-
sistant application. In lieu of having training and test data
transcribed, we use an existing rule-based system to gener-
ate written-form output from spoken-form data. By manually
checking 1000 randomly selected outputs, we estimate the sen-
tence accuracy (SA) of the rule-based system at about 99%.
Given the high accuracy of the rule-based system, we believe
that using this data provides a reasonable way to evaluate our
approach. We expect our results to generalize to the case where
hand-transcribed data is available.

We will primarily use sentence fidelity (SF) to the rule-
based system as our evaluation metric. A written-form out-
put must perfectly match the rule-based system’s output to be
counted as matching. We present results on a set of 800,000
randomly selected utterances.

4.2. Data Selection

For about 80% of utterances in our data set, the only action
performed by ITN is to capitalize the first spoken-form token.
For this reason, we found it useful to over-represent utterances
where ITN was doing a more significant transformation in train-
ing. We do this by selecting half of the training data using a reg-
ular expression matched against written-form utterances. This
regular expression matched digits, commas, address abbrevia-
tions (e.g., “Ave.”), currency symbols, common URL prefixes,
common URL suffixes and the at symbol (“@”).

4.3. Hyperparameters

After a coarse tuning, the most compact model on which we ob-
served the best performance with 1M training utterances had 64
dimensional word embeddings, 32 dimensional feature embed-
dings, one bi-directional LSTM layer with 96 dimensional input
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and 128 hidden units, and a single-layer MLP with 128 units.
All weights and embeddings were randomly initialized using a
uniform distribution over (-0.1, 0.1). The input spoken-form to-
ken vocabulary size was 30,000. All unique labels found in the
training set were included in the output vocabulary. Because
some labels occur very rarely, the output label vocabulary size
depended on the training set. The output vocabulary sizes were
152, 170 and 208 for the 500K, 1M and 5M utterance training
sets, respectively.

4.4. Results

In Table 5, we show the SFs achieved without input features,
using only the capitalization feature and using all input features
for various amounts of training data. We observe that using the
capitalization feature gives significant gains across training data
amounts. Looking closely at the results reveals that the most
significant impact of this feature is rather mundane: it allows the
model to correctly predict whether or not the first spoken-form
token in an utterance needs to be capitalized, even when that to-
ken is very infrequent in the training data or out-of-vocabulary.

Adding features derived from the rewrite table increases ac-
curacy slightly when training with 500K training utterances but
does not appear to affect performance for larger training data
amounts. However, it is easy to construct test examples for
which the additional features prove useful. For instance, mod-
els built with only the capitalization feature will not correctly
abbreviate measurement units not seen in the training data (e.g.
“zettabytes”.) Models trained with the additional input features
will usually abbreviate these units correctly. Units not seen in
the training data are extremely rare in the test data, and so we
do not see an impact on overall accuracy, but we consider the
consistent abbreviation of units a requirement for the system.

Table 5: SF for models trained without input features, using
only the capitalization feature, and using all input features us-
ing 500K, 1M and 5M utterances.

Features SF(%)
500K 1M 5M

None 98.95 99.26 99.65
Capitalization 99.33 99.62 99.85
All 99.46 99.62 99.85

To get a better handle on performance for those utterances
where ITN performs significant transformations, we extracted
targeted subsets of the test data. The sets were selected using
regular expressions applied to utterance spoken forms. Exam-
ples are given for each in Table 6. To show that our reference
rule-based system performs well on these sets, we also provide
a rough estimate of its accuracy, based on manually evaluat-
ing 100 utterances per set. In Table 7, we present results using
500K, 1M and 5M training utterances. We see that with 1M
training utterances, SF on all of the sets but CURRENCY ex-
ceeds 90%. We suspect that a more sophisticated training data
selection approach would narrow the performance gap between
training with 1M and 5M utterances.

To evaluate whether the system would respond as expected
to training data modification, as well as whether it could cap-
ture transformations that occur in varied contexts, we attempted
to improve the performance of the system on time expressions.
The rule-based system requires the presence of ’a.m.’ or ’p.m.’
or a small set of trigger phrases in order to format a numeric
expression as a time. This results in improperly formatted out-

put like “Change the 5 PM alarm to 512”. To correct these
sorts of errors, we selected utterances with likely errors from
the training data using a broad regular expression, then manu-
ally corrected the written forms. We did the same for the test
set, obtaining a set of 400 utterances to evaluate the effect of
the fix. After retraining the system on the edited training data,
it produced the correct output for 84.8% of the test utterances.
In general, we’ve had success at fixing a variety of incorrect
behaviors by correcting training data as just described, adding
targeted training data and, occasionally, adding new input fea-
tures.

Table 6: Targeted test set sizes, rule-based reference system SAs
and examples. SAs were estimated on 100 utterances per set.

Set # Utts SA(%) Spoken Form Examples
TIME 23066 98 set an alarm for ten thirty a.m.
MATH 10954 97 what is thirty five times three
ADDRESS 7325 90 navigate to one fifty South Avenue

Presto New Jersey
MEASURE 2525 99 how many pounds is twenty eight

grams
DATE 1744 100 what day is January thirtieth two

thousand seventeen
CURRENCY 825 95 how many dollars is thirteen

hundred euros

Table 7: SF on targeted test sets using models trained with
500K, 1M and 5M utterances.

Set SF(%)
500K 1M 5M

ALL 99.5 99.6 99.9
TIME 99.1 99.2 99.7
MATH 92.8 94.6 97.9
ADDRESS 86.7 91.9 97.7
MEASURE 85.6 96.5 98.5
DATE 88.0 92.1 98.1
CURRENCY 84.0 89.5 95.6

5. Conclusions
We present an approach to ITN that combines a set of simple
rules and a few hand-written grammars with a bi-directional
LSTM. The approach has the benefits of a data-driven system,
while using an underlying statistical model that is relatively
simple and compact. Using 1M training utterances, we are able
to build a system which approaches the overall performance of
a rule-based system with about 99% SA. We show that the ap-
proach also performs well on test sets targeted toward utterances
where ITN performs significant transformations.
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