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Abstract
In this work, we propose a robust method to perform frame-
level classification of voiced (V) and unvoiced (UV) phonemes
from whispered speech, a challenging task due to its voiceless
and noise-like nature. We hypothesize that a whispered speech
spectrum can be represented as a linear combination of a set of
colored noise spectra. A five-dimensional (5D) feature is com-
puted by employing non-negative matrix factorization with a
fixed basis dictionary, constructed using spectra of five colored
noises. Deep Neural Network (DNN) is used as the classifier.
We consider two baseline features-1) Mel Frequency Cepstral
Coefficients (MFCC), 2) features computed from a data driven
dictionary. Experiments reveal that the features from the col-
ored noise dictionary perform better (on average) than that us-
ing the data driven dictionary, with a relative improvement in
the average V/UV accuracy of 10.30%, within, and 10.41%,
across, data from seven subjects. We also find that the MFCCs
and 5D features carry complementary information regarding the
nature of voicing decisions in whispered speech. Hence, across
all subjects, we obtain a balanced frame-level V/UV classifica-
tion performance, when MFCC and 5D features are combined,
compared to a skewed performance when they are considered
separately.
Index Terms: Voiced and Unvoiced whispered phonemes,
Classification, Non-negative matrix factorization

1. Introduction
Whispered speech is typically produced in private as well as
in pathological conditions, such as laryngectomy [1]. Whis-
pered speech lacks pitch due to the absence of vocal folds vi-
brations during its production [2] and hence, is voiceless and
less intelligible compared to neutral speech. Therefore, several
attempts have been made in order to reconstruct neutral speech
from whispered speech [1, 3, 4, 5]. To ensure a natural sounding
reconstructed speech, it is essential to perform, both, the estima-
tion and appropriate incorporation of pitch. This process typi-
cally requires a voiced (V) and unvoiced (UV) decision from the
whispered speech. Hence, automatic classification of V and UV
phonemes from whispered speech becomes vital. Since, V and
UV phonemes are characterized by the presence and absence
of pitch, respectively, the task of classifying V/UV phonemes1

from a speech that is typically voiceless, is a challenging one,
although they are perceptually discriminative [6].

There exist several algorithms to reconstruct neutral speech
from whispers, by a direct estimation of the pitch contour with-
out an intermediate V/UV classification step. These include
prediction of pitch from spectral features via a statistical model
[5, 7] and estimation of pitch as a function of formants [8].

1Although ‘voiced’ phonemes are not voiced (lack pitch) while
whispering, we still address them as ‘voiced’ for convenience.

These procedures typically suffer from an unnatural prosodic
contour and formant estimation errors, respectively. Therefore,
to obtain a natural pitch contour, there is a need to first predict
if a given frame of whispered speech is V or UV.

The task of classifying V/UV phonemes from whispered
speech has been addressed in the past. Sharifzadeh et al. used a
frame energy based technique to classify V and UV frames from
pathological whispered speech [1]. This work requires patient
specific manually chosen thresholds for the classification task.
An approximate measure of voicing, the energy ratio between
higher and lower frequencies, was employed by Morris et al.
[3], while a formant count procedure was adapted by Ahmadi et
al. [4]. The gender specific shift of formant frequencies [9] and
the noise-like nature of whispered speech [8], could lead to a
poor performance of such approximations and formant estima-
tion.

In our work, we exploit the noise-like nature of whis-
pered speech to obtain voicing cues, by attempting to deter-
mine the ‘color’ of whispered V and UV phonemes. In or-
der to do so, we hypothesize that a whispered speech spectrum
can be represented as a linear combination of spectra from col-
ored noises. In the proposed method, we consider five col-
ored noises, namely, Violet, Blue, White, Pink and Brown.
We consider frame-level V/UV classification. Interestingly,
a Deep Neural Network (DNN) classifier trained on the fea-
tures from the coefficients corresponding to a dictionary of col-
ored noises, computed using Non-negative Matrix Factorization
(NMF), outperforms a DNN classifier trained on those from a
dictionary learnt directly from the data. A combination of spec-
tral features and those computed using the color noise dictionar-
ies, is found to yield an equally good performance on both the
V and UV phoneme classes, across and within seven subjects,
in comparison to the skewed performance exhibited by the two
baseline schemes considered in the study. We begin with an in-
terpretation of the ‘color’ of whispered V and UV phonemes in
Section 2.

2. The ‘color’ of whispered V/UV phonemes
It is known that the V speech segments have a steeper spectral
slope compared to that of the UV segments, in neutral speech
[10, 11]. The noise-like whispered speech may not always fol-
low a trend in the steepness of the spectral slopes between V
and UV phonemes, similar to that of neutral speech. Therefore,
we analyze if the noise-like whispered speech spectrum could
be represented as a linear combination of colored noises. We
hypothesize that the combination of the spectra of the colored
noises, in order to represent a V spectrum would be different
from that to represent a UV spectrum. As a preliminary at-
tempt to validate this hypothesis, in this work, we consider the
spectrally flat white Gaussian noise, along with two noises with
decreasing and two noises with increasing spectral slopes. Blue
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Figure 1: Original spectra, in blue continuous line, and the re-
constructed spectra, in red dashed line, (using five CNBVs for
each of the five colored noises in NMF) for one V, (A), and one
UV, (C), spectra with corresponding coefficients, (B) and (D),
respectively.

and Violet noises are characterized by an increasing spectral
slope of f and f2, respectively, while Pink and Brown noises
are characterized by decreasing slopes of 1/f and 1/f2, re-
spectively, where f denotes frequency. We then construct a col-
ored noise dictionary (CND) using spectra from each of the five
noises and employ the NMF technique [12] to estimate the con-
tribution of each of these colored noise basis vectors (CNBV).

We begin by considering a whispered speech utterance of
length N samples, denoted by x[n], n=0 . . . N − 1. We then
obtain the spectrogram, P ≥ 0, using a window of length Nw

and a shift of Nsh samples. Therefore, we have a non-negative
matrix P of dimensions NF × Nt and a fixed dictionary WN

of dimension NF × r. Using NMF, we compute a matrix of
coefficients H∗, of dimensions r×Nt, by solving the following
Euclidean norm (‖.‖2) minimization problem,

H∗ = argmin
H≥0

‖P −WN ×H‖2, (1)

where, WN ≥ 0 is the fixed CND with rank r and H∗ is the
corresponding coefficient matrix.

Fig. 1 shows the original spectra (from 1 to 7kHz) and the
reconstructed spectra (a column of WN ×H∗ corresponding to
the concerned V/UV spectrum) for one V frame (A) and one
UV frame (C). The contribution of the CNBVs (a column of
H∗ corresponding to the concerned V/UV spectrum) is shown
in (B) and (D), respectively. It can be seen that Brown and Pink
noises with a decreasing spectral slope contribute more to the V
spectra while noises such a White, Violet and Blue with zero or
an increasing slope contribute more to the UV spectra. We make
two important observations: 1) The V and UV phonemes are not
completely characterized by one noise of a particular spectral
slope, but are characterized by a combination of several noises,
2) The CNBVs contributing to V are different from those to UV.

As seen from Fig. 1, the reconstructed spectrum does not
exactly match with the original spectrum. Therefore, we ana-
lyze if these fixed sets of colored noises indeed capture the trend
in the spectrum of V and UV phonemes. For this, we compute
the frame-wise spectral slope [13] of the original and the re-
constructed spectra, using the whispered speech data from four
female (F1-F4) and three male (M1-M3) subjects (∼ 35000
frames per subject) and compute the histogram of their differ-
ence, as shown in Fig. 2. We observe only a small difference
of the order 10−3, indicating that the CNBVs from these five
noises could be sufficient to capture the slope of the whispered

V and UV phonemes. It is known that the whispered speech
is characterized by a lower spectral tilt [11, 13], compared to
the neutral speech. The lower values of spectral slope may not
effectively capture the differences between whispered V/UV
phonemes. Therefore, we hypothesize that the pattern of the
relative contribution of different colored noises in capturing the
whispered speech spectrum could discriminate whispered V and
UV phonemes well.
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Figure 2: Histogram of the difference in the spectral slopes com-
puted from the original and the reconstructed (using NMF) V
spectra (top row) and UV spectra (bottom row) for seven sub-
jects.

3. Proposed V/UV classification Method
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Figure 3: Block diagram highlighting the steps involved in the
proposed automatic V/UV classification from whispered speech.

The block diagram of the proposed DNN based classifier is
shown in Fig. 3. We generate WN by randomly selecting equal
number of spectra from each of the five colored noises. We use
a set of whispered utterances for training the DNN. With WN

and the spectra computed from the training dataset, Ptrain, we
compute the coefficient matrix H∗

train by NMF, using Eq. 1. A
five dimensional feature F 5D

train is then computed from H∗
train

as follows:

F 5D
train[j, p] =

( r
5 )j∑

i=( r
5 )(j−1)+1

log (H∗
train[i, p]) , j = 1 . . . 5, (2)

where, F 5D
train[j, p]

2 corresponds to the jth feature in the p-th
frame. From Eq. 2, we see that the F 5D

train captures the strength
of the contribution of the CNBVs corresponding to each col-
ored noise. We then train a DNN using these features. Given a
test whispered spectrum, we follow the same procedure to com-
pute the features, as depicted in Fig. 3, and perform the V/UV
classification using the trained DNN (5D-DNN scheme). The
parameters such as the rank r for the NMF and those of the
DNN are optimized over a validation dataset. We now explain
the dataset used in our experiments.

4. Dataset
For our experiments, we collected whispered speech data from
four female (F1, F2, F3 and F4) and three male subjects (M1,

2Using the r dimensional features directly from H∗
train did not im-

prove the classification accuracy.
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M2 and M3), whose native language is Kannada. The subjects
are proficient in speaking English. The average age of the sub-
jects was 21(±1.528) years. We chose the 460 phonetically
balanced sentences from the MOCHA-TIMIT database [14], as
the stimuli. The stimuli were presented to the subject and the
subject was instructed to whisper each of these 460 sentences.
The recordings were carried out in an anechoic chamber us-
ing a Sennheizer e822S microphone at a sampling frequency
of 16kHz. Since whispered speech is typically of low intensity,
there is a need to perform the sound pressure level (SPL) cali-
bration [15]. Therefore, we collected the SPL readings, period-
ically, during the course of the recordings using a TES-1350A
sound level meter. Each recording was listened to and the utter-
ances with errors such as mis-pronunciations, were discarded.
For the seven subjects, we obtained 435, 436, 409, 455, 445,
444 and 444 sentences, with a total duration of 153.727 min-
utes. The average duration of each sentence is 2.861(±0.728)
seconds.

5. Experiments
5.1. Data Preparation

In order to perform frame-level V/UV classification, we require
the ground truth locations of the V and UV segments. There-
fore, with the collected data, we perform a forced alignment us-
ing a Gaussian mixture model-Hidden Markov model (GMM-
HMM) setup, using the Kaldi toolkit [16], with three phonemes
– V, UV and silence. The forced aligned boundaries are man-
ually corrected in case of any errors. The V and UV bound-
aries are then obtained from the corresponding forced aligned
V phonemes and UV phonemes, respectively. Since, the goal
of the frame-level V/UV classification is to help in obtaining a
better pitch contour for whisper to neutral speech conversion,
we include ‘silence’ into the UV category.

5.2. Experimental Setup

The collected data shows a class imbalance, with
1.911 (±0.513)s of V phonemes and 0.930 (±0.383)s
of UV phonemes (on average) per utterance. Thus, a scheme
that results in a high average, yet a skewed performance in
V/UV classification, may not necessarily yield perceptually
relevant voicing decisions to reconstruct neutral speech from
whispered speech. Hence, we aim to achieve a balanced
or an equal classification performance for both the classes.
Therefore, we report two additional numbers– the individual
classification accuracies for the two classes, namely, V
accuracy and UV accuracy.

We perform two sets of experiments using the subject-wise
and ‘leave-one-subject-out’ setups. For the subject-wise exper-
iments, we use a four-fold setup, where in each fold a randomly
picked set of 100 sentences (from one subject) is split, in the
ratio 4 : 1, to create the training set3 and the validation set, re-
spectively. A non-overlapping set of 300 sentences (from the
same subject) is chosen as the test data. Hence, for each subject
we obtain four sets of classification accuracies (for V and UV,
individually and averaged) from four folds. For the ‘leave-one-
subject-out’ framework, we perform seven experiments, each,
using data from six subjects for training and that from the ‘left-
out’ subject for testing. We use the test sets from the subject-
wise four folds in each of the seven experiments. Therefore,

3The training feature set is ensured to have an equal number of V and
UV frames to have a balance between the two classes while training.

we obtain a total of 28 sets of classification accuracies from 7
subjects × 4 folds.

5.3. Baseline Schemes

We consider two baseline features to compare the performance
of the proposed 5D features. As one baseline scheme, we con-
sider a DNN classifier with the 13-dimensional static Mel Fre-
quency Cepstral Coefficients (MFCC) as features (MFCC-DNN
scheme), as they are known to effectively capture the spec-
tral shape of speech. We test the robustness of the constructed
CND against a data driven dictionary (DD-DNN scheme). Us-
ing NMF4, we find the dictionary by solving the Euclidean
norm (‖.‖2) minimization problem in the training set, W ∗ =
argminW≥0,H≥0 ‖Ptrain − W × H‖2, where, W is a ran-
domly initialized basis matrix, H is the corresponding coef-
ficient matrix and the W ∗ is the optimized dictionary. We
learn separate dictionaries for V, W ∗

V , and UV, W ∗
UV , each of

rank rdd. We then concatenate these two dictionaries to ob-
tain the data driven dictionary, WDD = [W ∗

V ,W ∗
UV ] of dimen-

sion NF × 2rdd. We then compute a two-dimensional feature,
FDD
train, in a manner similar to Eq. 2.

5.4. Parameters

For our experiments, we compute the spectrogram with a win-
dow length, Nw=160 samples, corresponding to 10ms with a
shift of Nsh=160 samples using FFT bin size of 512. Since, the
slow rise and fall of energy from 0 to 1kHz and from 7 to 8kHz,
respectively, could affect the estimation of H∗ using the CN-
BVs, we consider the frequency range 1-7kHz with NF =193.
MFCCs are computed using the same values of Nw and Nsh us-
ing the Kaldi toolkit. As mentioned in Section 5.2, the choice of
the optimal parameters is based on the balance in performance
achieved for both the classes, on the validation dataset. From
five choices of r, namely, 5, 10, 15, 20 and 25, we find r=25 as
the optimal choice. Similarly, from five choices of rdd being
2, 4, 5, 10 and 12, rdd=5 is found to be the optimal choice. We
implement NMF using the NMFlib package [17].

To understand the nature of voicing information carried by
the 5D features and MFCCs, we perform experiments combin-
ing the two sets of features (Combined-DNN scheme). In all the
schemes, we use a three layer DNN with 64 hidden neurons in
each layer. Optimization is done using Adam [18], with a batch
size of 5 and binary cross-entropy as the loss function. Based
on the performance on the validation dataset, we choose sig-
moid activation function for the output layer in all schemes, the
‘relu’ activation function for the hidden layers of the 5D-DNN
scheme and ‘tanh’ for the rest. The DNNs are implemented
using Keras [19] and Theano [20] libraries.

6. Results and Discussion
6.1. Color noise dictionary Vs data driven dictionary

For better illustration, we choose the same value for r and rdd
as 25, to construct WN , W ∗

V and W ∗
UV . Fig. 4 shows these dic-

tionaries computed from the training data for the second fold of
the subject F2. As seen from the figure, the CND contains equal
number of realizations of the five different noises with the spec-
tral slope decreasing from left (Violet) to right (Brown). From
Fig. 4(b) we see that W ∗

V picks up lower frequencies, less than

4We use NMF without sparsity constraints on W , since we do not
expect the dictionary for the noise-like whispered speech to be sparse.
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Figure 4: Dictionaries from one fold of subject F2: (a) WN

constructed using Violet (vi), Blue (bl), White (wh), Pink (p)
and Brown (br) noises; (b) Data driven dictionary for V, W ∗

V

and (c) UV, W ∗
UV , phonemes.

3000Hz, corresponding to the typical range of the formant fre-
quencies observed in female whispered speech [21]. Interest-
ingly, we see that a few higher frequencies are also dominant in
the V dictionary. This could be due to the fact that whispered
speech is characterized by high energy in the higher frequencies
[13]. We also observe that W ∗

UV has more contribution from the
higher frequencies, typically above 3500Hz.

6.2. Subject-wise Experimental Results

Averaged across V/UV, we obtain an accuracy of
65.60% (±11.37), 72.26% (±5.60), 77.21% (±6.40),
75.98% (±4.78) for DD-DNN, 5D-DNN, MFCC-DNN
and Combined-DNN schemes, respectively. The average
accuracy of the DD-DNN scheme is 74.23%(±10.62) and
56.98%(±12.12) for V and UV, respectively. It is clear that
the DD-DNN scheme predicts most frames as V than UV.
Interestingly, we see that the 5D-DNN shows an improvement
of 1.27% and 12.03% (on average) in the V and UV accuracies
compared to the DD-DNN scheme. This reveals the potential
for a CND to represent, better, the whispered V and UV
phonemes compared to a data driven dictionary.

Fig. 5 shows the average V and UV classification accura-
cies across four folds of the seven subjects for the MFCC-DNN,
5D-DNN and the Combined-DNN schemes. From the figure,
we see that the MFCC-DNN scheme predicts most frames as
UV (on average) with the drop in the accuracy of UV to V be-
ing 11.61% (relative). We see that the 5D-DNN shows a bal-
anced performance (on average) for both V and UV except for
subjects F1 and F2. Interestingly, we see that the Combined-
DNN scheme bridges the fall in the accuracy from UV to V in
the MFCC-DNN scheme of 11.61% (relative) to 3.94% (rela-
tive). Also, averaged across V and UV, we obtain comparable
accuracies of 77.22%(±4.78) and 76.41%(±4.58) for MFCC-
DNN and Combined-DNN, respectively. The Combined-DNN
scheme shows an improvement of 4% (relative) in the V accu-
racy compared to that of MFCC-DNN and 12.94% (relative) in
the UV accuracy compared to that of 5D-DNN. This indicates
that the information regarding the voicing decisions captured by
the 5D features is complementary to that by MFCCs.
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Figure 5: Average classification accuracies for the 7 subjects
across 4 folds, for V, and UV in shades of red and green, repec-
tively, for (1) MFCC-DNN, (2) 5D-DNN and (3) Combined-
DNN schemes. Error bars indicate the standard deviation. The
average accuracy (standard deviation) across all subjects and
all folds is indicated in red text for V and green text for UV for
the three schemes.

6.3. ‘Leave-one-subject-out’ Experimental Results

Table 1: The average (standard deviation) of the V and UV ac-
curacies, in %, across all folds of the seven subjects

Schemes V UV Average V/UV

DD-DNN 77.39 53.11 65.25
(11.82) (10.91) (11.37)

5D-DNN 76.70 67.39 72.04
(8.02) (4.50) (6.26)

MFCC-DNN 73.63 78.51 76.06
(5.55) (4.37) (4.87)

Combined-DNN 73.81 74.78 74.29
(8.31) (10.91) (6.34)

Table. 1 provides the accuracy within and across V and
UV phonemes, averaged over all the folds of the seven sub-
jects. Similar to the observations in Section 6.2, we see that the
DD-DNN scheme, shows a skewed performance with the V ac-
curacy being higher than that of UV by 31.37% (relative). We
see that this gap is reduced by 5D-DNN to 12.14% (relative).
This, together with an increase in the average V/UV accuracy
indicates that, the generic CND represents the spectra from an
‘unseen’ subject, better than a subjects specific dictionary learnt
from the data. In the MFCC-DNN scheme, the drop in the ac-
curacy from UV to V is 6.63% (relative), a reduction in the
gap compared to 5D-DNN. It could be that the nature of the
‘colors’ of V and UV phonemes, is subject dependent. Inter-
estingly, we find that compared to the subject-wise setup, the
objective function value obtained while optimizing H∗ (using
Eq. 1), in the ‘leave-one-subject-out’ setup, turns out to be 2%,
2.21% higher for F1 & F2 and 7.42%, 3.18%, 5.09%, 1.66%
and 1.81% lower for the five other subjects (on average). The
increase seen for subjects F1 and F2 indicates that the ‘coloring’
of the spectra for the two subjects is different from that of the
other subjects and, hence, is poorly represented in the ‘leave-
one-subject-out’ setup compared to the subject-wise setup. Fi-
nally, we find that the Combined-DNN scheme, yields the most
balanced performance, with an average V/UV accuracy compa-
rable to that of MFCC-DNN, in addition to the fall of accuracy
from UV to V being only 1.30%, the least among all schemes,

7. Conclusion
We perform a frame-level classification of whispered V and
UV phonemes, by exploiting the noise-like nature of whispered
speech. Interestingly, we see that the CND represents the whis-
pered speech spectra, better, compared to a data driven dictio-
nary. Experiments both, within and across subjects, reveal that
the contribution of each CNBV, varies from V to UV, confirm-
ing that the ‘color’ of the V and UV phonemes is, indeed, dif-
ferent. We also find that the features extracted from the CND
carry complementary information regarding voicing decisions,
compared to the MFCCs. This makes the scheme, trained on the
combination of the two features, exhibit a more balanced per-
formance across the two classes. Further analysis is required to
understand the broad class phoneme specific coloring in whis-
pered speech and their dominant CNBVs. Investigating the hy-
pothesis of a subject dependent ‘coloring’ of the V and UV
phonemes using articulatory data, is a part of our future work.
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