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Abstract
A text-to-speech synthesis system typically consists of multi-
ple stages, such as a text analysis frontend, an acoustic model
and an audio synthesis module. Building these components of-
ten requires extensive domain expertise and may contain brittle
design choices. In this paper, we present Tacotron, an end-to-
end generative text-to-speech model that synthesizes speech di-
rectly from characters. Given <text, audio> pairs, the model
can be trained completely from scratch with random initializa-
tion. We present several key techniques to make the sequence-
to-sequence framework perform well for this challenging task.
Tacotron achieves a 3.82 subjective 5-scale mean opinion score
on US English, outperforming a production parametric system
in terms of naturalness. In addition, since Tacotron generates
speech at the frame level, it’s substantially faster than sample-
level autoregressive methods.
Index Terms: text-to-speech synthesis, sequence-to-sequence,
end-to-end model.

1. Introduction
Modern text-to-speech (TTS) pipelines are complex [1]. For
example, it is common for statistical parametric TTS to have
a text frontend extracting various linguistic features, a dura-
tion model, an acoustic feature prediction model and a complex
signal-processing-based vocoder [2, 3]. These components are
based on extensive domain expertise and are laborious to de-
sign. They are also trained independently, so errors from each
component may compound. The complexity of modern TTS de-
signs thus leads to substantial engineering efforts when building
a new system.

There are thus many advantages of an integrated end-to-
end TTS system that can be trained on <text, audio> pairs
with minimal human annotation. First, such a system alleviates
the need for laborious feature engineering, which may involve
heuristics and brittle design choices. Second, it more easily al-
lows for rich conditioning on various attributes, such as speaker
or language, or high-level features like sentiment. This is be-
cause conditioning can occur at the very beginning of the model
rather than only on certain components. Similarly, adaptation to
new data might also be easier. Finally, a single model is likely
to be more robust than a multi-stage model where each com-
ponent’s errors can compound. These advantages imply that an
end-to-end model could allow us to train on huge amounts of
rich, expressive yet often noisy data found in the real world.

TTS is a large-scale inverse problem: a highly compressed
source (text) is “decompressed” into audio. Since the same text
can correspond to different pronunciations or speaking styles,

∗ These authors really like tacos.
† These authors would prefer sushi.

this is a particularly difficult learning task for an end-to-end
model: it must cope with large variations at the signal level
for a given input. Moreover, unlike end-to-end speech recog-
nition [4] or machine translation [5], TTS outputs are continu-
ous, and output sequences are usually much longer than those
of the input. These attributes cause prediction errors to accu-
mulate quickly. In this paper, we propose Tacotron, an end-to-
end generative TTS model based on the sequence-to-sequence
(seq2seq) [6] with attention paradigm [7]. Our model takes
characters as input and outputs raw spectrogram, using sev-
eral techniques to improve the capability of a vanilla seq2seq
model. Given <text, audio> pairs, Tacotron can be trained
completely from scratch with random initialization. It does not
require phoneme-level alignment, so it can easily scale to using
large amounts of acoustic data with transcripts. With a simple
waveform synthesis technique, Tacotron produces a 3.82 mean
opinion score (MOS) on an US English eval set, outperforming
a production parametric system in terms of naturalness1.

2. Related Work
WaveNet [9] is a powerful generative model of audio. It works
well for TTS, but is slow due to its sample-level autoregressive
nature. It also requires conditioning on linguistic features from
an existing TTS frontend, and thus is not end-to-end: it only
replaces the vocoder and acoustic model. Another recently-
developed neural model is DeepVoice [10], which replaces ev-
ery component in a typical TTS pipeline by a corresponding
neural network. However, each component is independently
trained, and it’s nontrivial to change the system to train in an
end-to-end fashion.

To our knowledge, [11] is the earliest work touching end-
to-end TTS using seq2seq with attention. However, it requires
a pre-trained hidden Markov model (HMM) aligner to help the
seq2seq model learn the alignment. It’s hard to tell how much
alignment is learned by the seq2seq per se. Second, a few tricks
are used to get the model trained, which the authors note hurts
prosody. Third, it predicts vocoder parameters hence needs a
vocoder. Furthermore, the model is trained on phoneme inputs
and the experimental results seem to be somewhat limited.

Char2Wav [12] is an independently-developed end-to-end
model that can be trained on characters. However, Char2Wav
still predicts vocoder parameters before using a SampleRNN
neural vocoder [13], whereas Tacotron directly predicts raw
spectrogram. Also, their seq2seq and SampleRNN models need
to be separately pre-trained, but our model can be trained from
scratch. Finally, we made several key modifications to the
vanilla seq2seq paradigm. As shown later, a vanilla seq2seq
model does not work well for character-level inputs.

1Sound demos can be found at https://google.github.
io/tacotron
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Figure 1: Model architecture. The model takes characters as input and outputs the corresponding raw spectrogram, which is then fed
to the Griffin-Lim reconstruction algorithm to synthesize speech.
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Figure 2: The CBHG module adapted from [8].

3. Model Architecture
The backbone of Tacotron is a seq2seq model with attention
[7, 14]. Figure 1 depicts the model, which includes an encoder,
an attention-based decoder, and a post-processing net. At a
high-level, our model takes characters as input and produces
spectrogram frames, which are then converted to waveforms.
We describe these components below.

3.1. CBHG module

We first describe a building block dubbed CBHG, illustrated in
Figure 2. CBHG consists of a bank of 1-D convolutional filters,
followed by highway networks [15] and a bidirectional gated re-
current unit (GRU) [16] recurrent neural net (RNN). CBHG is a
powerful module for extracting representations from sequences.
The input sequence is first convolved with K sets of 1-D con-
volutional filters, where the k-th set contains Ck filters of width
k (i.e. k = 1, 2, . . . ,K). These filters explicitly model lo-
cal and contextual information (akin to modeling unigrams, bi-

grams, up to K-grams). The convolution outputs are stacked
together and further max pooled along time to increase local
invariances. Note that we use a stride of 1 to preserve the orig-
inal time resolution. We further pass the processed sequence to
a few fixed-width 1-D convolutions, whose outputs are added
with the original input sequence via residual connections [17].
Batch normalization [18] is used for all convolutional layers.
The convolution outputs are fed into a multi-layer highway net-
work to extract high-level features. Finally, we stack a bidi-
rectional GRU RNN on top to extract sequential features from
both forward and backward context. CBHG is inspired from
work in machine translation [8], where the main differences
from [8] include using non-causal convolutions, batch normal-
ization, residual connections, and stride=1 max pooling. We
found that these modifications improved generalization.

3.2. Encoder

The goal of the encoder is to extract robust sequential repre-
sentations of text. The input to the encoder is a character se-
quence, where each character is represented as a one-hot vector
and embedded into a continuous vector. We then apply a set
of non-linear transformations, collectively called a “pre-net”, to
each embedding. We use a bottleneck layer with dropout as
the pre-net in this work, which helps convergence and improves
generalization. A CBHG module transforms the pre-net out-
puts into the final encoder representation used by the attention
module. We found that this CBHG-based encoder not only re-
duces overfitting, but also makes fewer mispronunciations than
a standard multi-layer RNN encoder (see our linked page of au-
dio samples).

3.3. Decoder

We use a content-based tanh attention decoder (see e.g. [14]),
where a stateful recurrent layer produces the attention query
at each decoder time step. We concatenate the context vector
and the attention RNN cell output to form the input to the de-
coder RNNs. We use a stack of GRUs with vertical residual
connections [5] for the decoder. We found the residual connec-
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Table 1: Hyper-parameters and network architectures. “conv-
k-c-ReLU” denotes 1-D convolution with width k and c output
channels with ReLU activation. FC stands for fully-connected.

Spectral analysis pre-emphasis: 0.97; frame length: 50 ms;
frame shift: 12.5 ms; window type: Hann

Character embedding 256-D
Encoder CBHG Conv1D bank: K=16, conv-k-128-ReLU

Max pooling: stride=1, width=2
Conv1D projections: conv-3-128-ReLU
→ conv-3-128-Linear
Highway net: 4 layers of FC-128-ReLU
Bidirectional GRU: 128 cells

Encoder pre-net FC-256-ReLU→ Dropout(0.5)→
FC-128-ReLU→ Dropout(0.5)

Decoder pre-net FC-256-ReLU→ Dropout(0.5)→
FC-128-ReLU→ Dropout(0.5)

Decoder RNN 2-layer residual GRU (256 cells)
Attention RNN 1-layer GRU (256 cells)
Post-processing net Conv1D bank: K=8, conv-k-128-ReLU
CBHG Max pooling: stride=1, width=2

Conv1D projections: conv-3-256-ReLU
→ conv-3-80-Linear
Highway net: 4 layers of FC-128-ReLU
Bidirectional GRU: 128 cells

Reduction factor (r) 2

tions speed up convergence. The decoder target is an important
design choice. While we could directly predict raw spectro-
gram, it’s a highly redundant representation for the purpose of
learning alignment between speech signal and text (which is re-
ally the motivation of using seq2seq for this task). Because of
this redundancy, we use a different target for seq2seq decod-
ing and waveform synthesis. The seq2seq target can be highly
compressed as long as it provides sufficient intelligibility and
prosody information for an inversion process, which could be
fixed or trained. We use 80-band mel-scale spectrogram as the
target, though fewer bands or more concise targets such as cep-
strum could be used. We use a post-processing network (dis-
cussed below) to convert from the seq2seq target to waveform.

We use a simple fully-connected output layer to predict the
decoder targets. An important trick we discovered was predict-
ing multiple, non-overlapping output frames at each decoder
step. Predicting r frames at once divides the total number of de-
coder steps by r, which reduces model size, training time, and
inference time. More importantly, we found this trick to sub-
stantially increase convergence speed, as measured by a much
faster (and more stable) alignment learned from attention. This
is likely because neighboring speech frames are correlated and
each character usually corresponds to multiple frames. Emit-
ting one frame at a time forces the model to attend to the same
input token for multiple timesteps; emitting multiple frames al-
lows the attention to move forward early in training. A similar
trick is also used in [19] but mainly to speed up inference.

The first decoder step is conditioned on an all-zero frame,
which represents a <GO> frame. In inference, at decoder step
t, the last frame of the r predictions is fed as input to the decoder
at step t + 1. Note that feeding the last prediction is an ad-hoc
choice here – we could use all r predictions. During training,
we always feed every r-th ground truth frame to the decoder.
The input frame is passed to a pre-net as is done in the encoder.
Since we do not use techniques such as scheduled sampling [20]
(we found it to hurt audio quality), the dropout in the pre-net is
critical for the model to generalize, as it provides a noise source
to resolve the multiple modalities in the output distribution.

3.4. Post-processing net and waveform synthesis

As mentioned above, the post-processing net’s task is to con-
vert the seq2seq target to a target that can be synthesized into
waveforms. Since we use Griffin-Lim as the synthesizer, the
post-processing net learns to predict spectral magnitude sam-
pled on a linear-frequency scale. Another motivation of the
post-processing net is that it can see the full decoded sequence.
In contrast to seq2seq, which always runs from left to right,
it has both forward and backward information to correct the
prediction error for each individual frame. In this work, we
use a CBHG module for the post-processing net, though a sim-
pler architecture likely works as well. The concept of a post-
processing network is highly general. It could be used to predict
alternative targets such as vocoder parameters, or as a WaveNet-
like neural vocoder [9, 13, 10] that synthesizes waveform sam-
ples directly.

We use the Griffin-Lim algorithm [21] to synthesize wave-
form from the predicted spectrogram. We found that raising
the predicted magnitudes by a power of 1.2 before feeding to
Griffin-Lim reduces artifacts, likely due to its harmonic en-
hancement effect. We observed that Griffin-Lim converges after
50 iterations (in fact, about 30 iterations seems to be enough),
which is reasonably fast. We implemented Griffin-Lim in Ten-
sorFlow [22] hence it’s also part of the model. While Griffin-
Lim is differentiable (it does not have trainable weights), we do
not impose any loss on it in this work. We emphasize that our
choice of Griffin-Lim is for simplicity; while it already yields
strong results, developing a fast and high-quality trainable spec-
trogram to waveform inverter is ongoing work.

4. Model Details
Table 1 lists the hyper-parameters and network architectures.
We use log magnitude spectrogram with Hann windowing, 50
ms frame length, 12.5 ms frame shift, and 2048-point Fourier
transform. We also found pre-emphasis (0.97) to be helpful.
We use 24 kHz sampling rate for all experiments.

We use r = 2 (output layer reduction factor) for the MOS
results in this paper, though larger r values (e.g. r = 5) also
work well. We use the Adam optimizer [23] with learning
rate decay, which starts from 0.001 and is reduced to 0.0005,
0.0003, and 0.0001 after 500K, 1M and 2M global steps, re-
spectively. We use a simple `1 loss for both seq2seq decoder
(mel-scale spectrogram) and post-processing net (linear-scale
spectrogram). The two losses have equal weights.

We train using a batch size of 32, where all sequences are
padded to a max length. It’s a common practice to train se-
quence models with a loss mask, which masks loss on zero-
padded frames. However, we found that models trained this
way don’t know when to stop emitting outputs, causing repeated
sounds towards the end. One simple trick to get around this
problem is to also reconstruct the zero-padded frames.

5. Experiments
We train Tacotron on an internal North American English
dataset, which contains about 24.6 hours of speech data spoken
by a professional female speaker. The phrases are text normal-
ized, e.g. “16” is converted to “sixteen”.

5.1. Ablation analysis

We conduct a few ablation studies to understand the key com-
ponents in our model. As is common for generative models, it’s
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Table 2: 5-scale mean opinion score evaluation.

mean opinion score
Tacotron 3.82 ± 0.085

Parametric 3.69 ± 0.109
Concatenative 4.09 ± 0.119
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(a) Vanilla seq2seq + scheduled sampling
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(b) GRU encoder
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(c) Tacotron (proposed)

Figure 3: Attention alignments on a test phrase. The decoder
length is Tacotron is shorter due to the use of the output reduc-
tion factor r=5.

hard to compare models based on objective metrics, which of-
ten do not correlate well with perception [24]. We mainly rely
on visual comparisons instead. We strongly encourage readers
to listen to the provided samples.

First, we compare with a vanilla seq2seq model. Both the
encoder and decoder use 2 layers of residual RNNs, where each
layer has 256 GRU cells (we tried LSTM and got similar re-
sults). No pre-net or post-processing net is used, and the de-
coder directly predicts linear-scale log magnitude spectrogram.
We found that scheduled sampling (sampling rate 0.5) is re-
quired for this model to learn alignments and generalize. We
show the learned attention alignment in Figure 3. Figure 3(a)
reveals that the vanilla seq2seq learns a poor alignment. One
problem is that attention tends to get stuck for many frames be-
fore moving forward, which causes bad speech intelligibility in
the synthesized signal. The naturalness and overall duration are
destroyed as a result. In contrast, our model learns a clean and
smooth alignment, as shown in Figure 3(c).

Second, we compare with a model with the CBHG encoder
replaced by a 2-layer residual GRU encoder. The rest of the
model, including the encoder pre-net, remain exactly the same.
Comparing Figure 3(b) and 3(c), we can see that the alignment
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Figure 4: Predicted spectrograms with and without using the
post-processing net.

from the GRU encoder is noisier. Listening to synthesized sig-
nals, we found that noisy alignment often leads to mispronunci-
ations. The CBHG encoder reduces overfitting and generalizes
well to long and complex phrases.

Figures 4(a) and 4(b) demonstrate the benefit of using the
post-processing net. We trained a model without the post-
processing net while keeping all the other components un-
touched (except that the decoder RNN predicts linear-scale
spectrogram). With more contextual information, the prediction
from the post-processing net contains better resolved harmon-
ics (e.g. higher harmonics between bins 100 and 400) and high
frequency formant structure, which reduces synthesis artifacts.

5.2. Mean opinion score tests

We conduct mean opinion score tests, where the subjects were
asked to rate the naturalness of the stimuli in a 5-point Likert
scale score. The MOS tests were crowdsourced from native
speakers. 100 unseen phrases were used for the tests and each
phrase received 8 ratings. When computing MOS, we only in-
clude ratings where headphones were used. We compare our
model with a parametric (based on LSTM [19]) and a concate-
native system [25], both of which are in production. As shown
in Table 2, Tacotron achieves an MOS of 3.82, which outper-
forms the parametric system. Given the strong baselines and
the artifacts introduced by the Griffin-Lim synthesis, this repre-
sents a very promising result.

6. Discussions
We have proposed Tacotron, an integrated end-to-end genera-
tive TTS model that takes a character sequence as input and
outputs the corresponding spectrogram. With a very simple
waveform synthesis module, it achieves a 3.82 MOS score on
US English, outperforming a production parametric system in
terms of naturalness. Tacotron is frame-based, so the inference
is substantially faster than sample-level autoregressive methods.
Unlike previous work, Tacotron does not need hand-engineered
linguistic features or complex components such as an HMM
aligner. It can be trained from scratch with random initializa-
tion. We perform simple text normalization, though recent ad-
vancements in learned text normalization [26] may render this
unnecessary in the future.

We have yet to investigate many aspects of our model; many
early design decisions have gone unchanged. Our output layer,
attention module, loss function, and Griffin-Lim-based wave-
form synthesizer are all ripe for improvement. For example,
it’s well known that Griffin-Lim outputs may have audible arti-
facts. We are currently working on fast and high-quality neural-
network-based spectrogram inversion.
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