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Abstract
In this paper, we analyze a 53-hour speech corpus of
interactions of soldiers who had recently attempted suicide or
had strong suicidal ideation conversing with their therapists.
In particular, we study the complexity in therapist-patient
speech as a marker of their emotional bond. Emotional bond
is the extent to which the patient feels understood by and
connected to the therapist. First, we extract speech features
from audio recordings of their interactions. Then, we consider
the nonlinear time series representation of those features
and compute complexity measures based on the Lyapunov
coefficient and correlation dimension. For the majority of the
subjects, we observe that speech complexity in therapist-patient
pairs is higher for the interview sessions, when compared
to that of the rest of their interactions (intervention and
post-interview follow-up). This indicates that entrainment
(adapting to each other’s speech) between the patient and the
therapist is lower during the interview than regular interactions.
This observation is consistent with prior studies in clinical
psychology, considering that assessment interviews typically
involve the therapist asking routine questions to enquire about
the patient’s suicidal thoughts and feelings. In addition, we
find that complexity is negatively correlated with the patient’s
perceived emotional bond with the therapist.

Index Terms: nonlinear dynamical systems, complexity,
suicide, prosody, behavioral analysis, dyadic conversations

1. Introduction
Assessment of suicide risk is crucial in the mental health
domain and has been an important subject of research [1].
In a typical risk assessment setting, the therapist interviews
the patient about his or her suicidal thoughts, feelings and
past history of relevance in order to understand the patient’s
intent to commit suicide. From the therapist’s standpoint,
maintaining a good therapeutic relationship toward a common
goal is of utmost importance during the interactions. If
the patient feels less connected or comfortable with the
therapist, that can potentially lead to failure in accurate risk
assessment. Emotional bond is conceptually related to the
notion of empathy, the therapist’s ability to feel for the patient’s
sufferings. Empathy is deemed an essential quality for the
efficiency of a psychotherapist [2]. In addition to empathy,
emotional bond also entails the patient’s feeling of trust and
acceptance towards the therapist. This construct’s bidirectional
and interpersonal nature makes it useful yet challenging to
analyze from spoken interactions.

Analyzing verbal and nonverbal cues [3] from spoken
interactions can offer insights into behavior-centered domains
like psychological assessment and psychotherapy research,

understanding the expression and experience of emotional
bond between the interacting client and provider. A previous
study [4] found that vocal entrainment, i.e., coordination and
adaptation to each other’s speech patterns, functions as a
marker for empathy in drug addiction counseling. Likewise
the nature of dyadic synchrony in vocal arousal between a
child and an interacting psychologist was found to be an
indicative feature of diagnostic severity of Autism Spectrum
Disorder [5]. In this work, we investigate the characteristics
of patient-therapist interactions during suicide risk assessment
interviews. While researchers have attempted to predict suicide
risk itself from speech acoustic features [6, 7], to the best of
our knowledge, there has been no work in analyzing suicide
risk assessment interviews and interaction dynamics using
vocal cues. In addition to the similarity measures used to
quantify vocal entrainment [8], the current work employs the
notion of complexity in a dynamical systems approach by
modeling speech features as nonlinear time-series [9]. For two
interlocutors during a conversation, the jointly characterized
complexity of their speech patterns can be associated with
the degree of their entrainment. More specifically, in case
of lower behavioral similarity and less synchrony, there is
more variability in the underlying system, resulting into higher
system complexity [10].

Equipped with these tools to study spoken interactions of
the speakers, we first investigate whether the interaction style
during risk assessment interviews is different from other types
of interactions. Then we also look into the possibility of
using speech-based joint complexity measures as markers of
emotional bond between the therapist and the patient.

2. Dataset: Suicide Risk Assessment
Corpus

The dataset employed in this paper was collected as a part
of research on suicide risk among military personnel [11].
Although 97 active duty soldiers participated in this study,
we currently have complete speech recordings for 61 subjects
and annotations for 54 subjects (45 male and 9 female).
Based on self-reports, the majority of the participants (75.9%)
were Caucasian. The other patients identified themselves as
African-American, Native American and Hispanic or Latino.
All participants had active suicide ideation during the week
preceding the interaction, while 22 of them had attempted
suicide at least once in the past. Upon completion of the
informed consent process, they were invited for participation
in the study.

The study consisted of an interview session followed by
crisis intervention and a post-study follow-up on the same
day. Five therapists trained in suicide risk assessment and
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Figure 1: Overview of the structure of a session in the corpus

intervention procedures conducted the study. The conversation
took place between the patient and one of the therapists, and
was recorded using two directional microphones. The duration
of the interview sessions ranged from 10 minutes to 1 hour,
varying from patient to patient, resulting in 53 hours in total.
The interview session was semi-structured, where the therapist
asked a set of questions related to the patient’s reasons for
living, elaboration of suicidal thoughts, history of attempts
etc.The questions were carefully designed for suicide risk
assessment based on the Beck Scale for Suicidal Ideation (BSSI)
[12] and the Suicide Attempt Self-Injury Interview (SASII)
structure [13]. Examples of these questions include: “Describe
exactly what method you used to injure yourself.”, “With all
this going on, what would you say are your reasons for living,
or your reasons for not killing yourself?”. The patient’s answer
to the latter question, also known as reasons for living (RFL)
[14], was manually transcribed. After the interview session,
an intervention session and a post-study conversation were
conducted. The basic structure of a session is shown in Figure 1.

The patient was asked to rate a number of measures:
emotional bond, the extent of reasons for living and 10 other
attributes related to the patient’s moods (urge, happiness,
burden, hope etc.) These ratings were self-reported through a
written questionnaire and on a scale from 1 to 100. In this work,
we only focus on one attribute—emotional bond between the
therapist and the patient, as perceived by the patient [15]. For
most of the subjects, there were one or more additional follow-
up sessions (after 1, 3 and 6 months) which did not have any
annotations or transcripts.

3. Feature Extraction
3.1. Preprocessing of the Audio

The audio data of our therapist-patient conversations requires
preprocessing in order to extract the speech features in segments
spoken by each speaker. First we process the entire audio
with voice activity detection (VAD) to identify and and remove
non-speech or silence regions. For this purpose, we use an
RNN-LSTM model-based VAD [16] method that is a part
of the OpenSMILE toolkit [17]. Next, we perform speaker
diarization to separate the patient and the therapist’s speech.
The diarization algorithm [18] used in this work consists of
two steps. First, we identify speaker-homogeneous speech
segments by detecting the speaker changes using a Generalized
Likelihood Ratio (GLR) based criteria. Then we cluster those
segments into two separate groups–one for each speaker.

3.2. Frame-level prosodic cues

For analyzing complexity in this work, we primarily rely on
two prosodic cues shown to be relevant in psychology and
behavioral signal processing literature [19] [3], namely, pitch
and energy. We extract speech features with a 25 ms moving
window with a 10 ms shift. We use the Praat toolbox [20]
to extract pitch and energy. Since pitch extraction is still not
very robust and often prone to errors in presence of noise,
we perform median filter-based smoothing (window size of 5
samples) on the raw pitch feature stream. In addition, we
linearly interpolate the pitch values where pitch is detected to
be zero, e.g., unvoiced regions. For energy, we do not perform
any postprocessing. Finally, we perform normalization of the
feature streams for each speaker.

To compute an alternate PCA-based speech entrainment
measure described in Section 5, we extract a 130 dimensional
set of features following the proposal of the INTERSPEECH
2013 computational paralinguistics challenge (ComParE) [21],
consisting of various prosodic, spectral and voice quality
features.

4. Nonlinear Dynamical Systems Modeling
of Speech Features

Nonlinear dynamical systems modeling of speech has been used
to capture the nonlinearity of vocal characteristics [22] [23].
Such nonlinear dynamical features and complexity measures
have shown promising results in many speech applications
including speech synthesis [22], phoneme classification [24],
speech identification [25] and in the prediction of Parkinson’s
disease severity from speech [26]. In our previous work on
couples therapy [9], we proposed five complexity measures
derived from prosodic features to capture information relevant
for studying human behavior.

Using similar techniques from [9], we model the speech
feature stream as the observed variable of a nonlinear dynamical
system (in other words, a nonlinear time series). We can
obtain a state space embedding from the feature stream. Then
we compute the largest Lyapunov coefficient and correlation
dimension from the state space embedding to quantify the
complexity of the underlying dynamical system. In this
section we briefly discuss the methods of computing these two
complexity measures from speech features.

4.1. State Space Embedding Reconstruction

Let us consider a discrete time-series z[n], e.g., the speech
feature stream in our case. Based on the nonlinear dynamical
systems approach, the obvious step is to obtain the state space
to characterize the underlying dynamics. Assuming a finite-
dimensional state space, we are interested in the mapping
function Φ that describes the dynamics of the state space:
Φ as x[n] = Φn(x[0]). Unfortunately, finding the original
state space from a real-world time-series is an extremely
hard problem. However, Takens’ theorem [27] enables us
to alternatively construct a mapping from the original state
space representation (x[n]) to a reconstructed state space in
embedding (y[n] ∈ R

d), given by:

x �→ y =
(
z[n],z[n+Δ], ...,z[n+(d−1)Δ]

)
(1)

Also known as the delay coordinates mapping, this
transformation depends on two important parameters: the
embedding dimension, d and the delay Δ. To compute the
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optimal delay to find the best representation, we consider the
mutual information function of the original time-series and
its delayed versions. The location of first local minimum is
used as an estimate of Δ. On the other hand, the embedding
dimension is estimated using Cao’s algorithm [28]. Essentially,
this mapping generates a trajectory in d-dimensional state
space from the original feature stream by introducing certain
delays. Once this trajectory in the reconstructed state space is
obtained, analyzing its temporal evolution can provide us with
different measures of complexity.

4.2. Different Complexity Measures

4.2.1. Largest Lyapunov exponent (LLE)

A common characterization of complexity in a state space
model is its sensitivity to initial conditions, which can be
described using the Lyapunov exponents (LE). The Lyapunov
exponent of a given direction is defined as the exponential
convergence or divergence rate of neighboring trajectories in
the state space embedding in that direction. If ‖δy[0]‖ and
‖δy[n]‖ denote the Euclidean separation of two trajectories at
initial condition and after time n, respectively, and λi is the
Lyapunov exponent in ith direction,

‖δy[n]‖
‖δy[0]‖ = eλin (n→ ∞) (2)

The largest Lyapunov exponent λm can be computed reliably
and hence is a popular measure of the complexity. We use an
algorithm proposed by Sato et al. [29] for estimation of λm from
the reconstructed state space embedding. A higher value of
the largest Lyapunov exponent refers to an increasingly chaotic
nature of the system [30].

4.2.2. Correlation Dimension (CD)

Proposed by Grassberger et al. [31], the Correlation Dimension
is defined as the exponential rate by which a quantity known as
correlation sum of points on an embedding grows as a function
of radius r. The correlation sum C(r) is defined as the fraction
of neighboring points closer than r, averaged over all N points.
Mathematically,

C(r) ∝ rD (3a)

C(r) =
2

N(N−1)

N

∑
i=1

N

∑
j=i+1

Θ(r−‖yi−y j‖) (3b)

In this equation, Θ(·) is the Heaviside step function, defined
as Θ(x) = 1 for x ≥ 0 and zero elsewhere. yi and y j are
any two points in the reconstructed state space and D is its
correlation dimension. We use a maximum likelihood estimator
proposed by Takens [27] to estimate correlation dimension.
Intuitively, it provides us with a measure of dimensionality of
the reconstructed state space embedding itself.

4.3. Joint Complexity of Therapist-Patient Interaction
Dynamics

In this work, we are interested in the style of interaction between
the therapist and the patient. Analyzing the complexity of
each individual’s speech can provide us with characteristics of
the speaker, but it does not capture the extent of entrainment.
If we can model their interaction with a single nonlinear
dynamical system, the similarity or dissimilarity is reflected in
the characteristics of that system. This motivates us to consider
the speech segments of both speakers to form a combined
time-series of features. The speaker normalization step in

preprocessing attempts to minimize discontinuities in speaker
boundaries. Complexity measures of the joint system formed
by the combined time-series are then computed. However, they
also reflect the complexity present within speakers, which is
undesirable as indicators of entrainment. Therefore we also
compute the complexity of both speakers (therapist and patient)
separately and normalize the joint complexity using them, as
shown in the following equation:

C(therapist,patient)normalized =
C(therapist,patient)

√
C(therapist) ·C(patient)

where C denotes any complexity measure as a function of
the speaker (or the dyad), which can be either the largest
Lyapunov exponent (LLE) or correlation dimension (CD) in our
work. Note that we empirically used the geometric mean of the
individual complexity measures of the therapist and the patient
for normalization.

5. PCA-based Acoustic Similarity
In addition to complexity measures, we also use a principal
component analysis (PCA)-based acoustic similarity metric
to quantify vocal entrainment proposed by Lee et al. [8].
This method first obtains principal components of features of
consecutive speaker turns separately: Y1 = XT

1 W1 and Y2 =

XT
2 W2. X1 and X2 are matrices formed by concatenating feature

vectors of all frames in a turn, where each row represents
the feature vector of one frame. W1 and W2 denote the PCA
transformation matrices and the projected feature matrices are
Y1 and Y2. If k1 and k2 components explain at least 95%
of the variance in Y1 and Y2 respectively, k = max(k1,k2)
components are retained from each PCA representation. Then
we form two vectors v1 and v2 containing the variances
of retained components of Y1 and Y2. We obtain two
numerically valid probability mass functions p11 and p22 by
normalizing v1 and v2, i.e., dividing by their individual vector
sum, as in [8]. Similarly, we obtain two other distributions
p12 and p21 by computing variances of XT

1 W2 and XT
2 W1

followed by normalization. Finally, the symmetric Kullback-
Leibler (KL) divergence is computed within the pairs (p11, p21)
and (p22, p12) and their mean is obtained as the acoustic
similarity between the turns:

sim(X1,X2) =
1

2

(
DsKL(p11||p21)+DsKL(p22||p12)

)
(4)

where DsKL(p||q) is the symmetric KL divergence between p
and q. Essentially, it relies on a bag-of-frames approach for
feature vectors within a speaker turn and computes a similarity
metric between consecutive turns of the interlocutors. In order
to compute a session-level acoustic similarity measure, we take
the mean similarity for all consecutive turns throughout the
session.

6. Experiments
6.1. Complexity during Interview Sessions

The risk assessment interview sessions were conducted with
predesigned questions. Unlike intervention sessions where the
therapist consciously tries to sympathize with the patient to help
her or him cope with the crisis, the purpose of interview sessions
is to quickly obtain relevant information from the patient. With
this objective at hand, the therapist-patient entrainment may
not be at par with their entrainment during intervention or
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follow-up sessions. To test this hypothesis, we conduct an
experiment by computing the normalized joint complexity of
therapist-patient pair for the interview, as described in Section
4.3. Each complexity measure (LLE and CD) is used for each
of the feature streams (pitch and energy). In addition, PCA-
based acoustic similarity measures are computed. We repeat
the same operation on the intervention and follow-up sessions
and compute the the average complexity of those sessions
of the same patient-therapist pair, which we refer to as the
baseline complexity. Then we check for what percentage of the
subjects the complexity in interview is higher than the baseline
complexity. The results are shown in Table 1, where we also
present the p-values obtained in the Student’s t-test against the
null hypothesis that there is no significant difference in the two
aforementioned complexity measures.

Results indicate that the majority (up to about 74%) of
the subjects have higher complexity in interviews than their
baseline complexity. This observation also turns out to be
statistically significant as p < 0.05 for all measures. Figure
2 shows the difference in the two complexities for correlation
dimension (CD) for energy feature stream by sorting them in
increasing order.

Measure
C(interview) > C(baseline)

Percentage of subjects p-value†

PCA-based similarity∗ 67.21 0.0072

LLE with pitch 72.13 0.0005

LLE with energy 70.49 0.0014

CD with pitch 65.57 0.0150

CD with energy 73.77 0.0002

Table 1: Results of testing for higher complexity (lower
similarity) in interview sessions in comparison to other
sessions, i.e., C(interview) > C(baseline)
†p < 0.05 indicates statistically significant difference
∗we test for similarity(interview) < similarity(baseline) in this case
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Figure 2: Sorted difference in normalized therapist-patient
complexity measure, using correlation dimension (CD) for
energy

6.2. Correlation with Emotional Bond

The Pearson’s correlation coefficients between complexity (and
similarity) measures are presented in Table 2. All complexity
measures are negatively correlated with the emotional bond
perceived by the patient (p < 0.05) as reported in their survey.

The negative values of the correlation coefficients ρ indicate
that higher complexity or lower entrainment is associated with
lower emotional bond. Only the PCA-based similarity does
not show significant correlation. The reason for this might be
the limitation of the PCA-based approach due to inability of
capture the temporal dynamics of features within a speaker turn.
However, the positive sign of ρ for similarity is consistent with
the findings for complexity measures.

Measure
Pearson’s correlation

ρ p-value†

PCA-based similarity 0.2480 0.1132

LLE with pitch −0.3022 0.0419

LLE with energy −0.3737 0.0148

CD with pitch −0.2733 0.0473

CD with energy −0.3815 0.0127

Table 2: Correlation between emotional bond and various
complexity (or similarity) measures
†p < 0.05 indicates statistically significant (strong) correlation

7. Conclusions
In this paper we study complexity measures in speech features
to analyze certain mechanisms of dyadic interaction dynamics.
We find that joint complexity measures tend to be higher
during risk assessment interview sessions of suicide prevention
therapy, when compared to the baseline complexity. This
indicates a lower degree of therapist-patient entrainment during
the interview sessions. Based on the interactions, the patients
evaluate their perceived emotional bond with the therapist.
We investigate the statistical relationship between ratings
of emotional bond and the computed complexity measures.
Results show that, joint complexity of speakers, also an
opposite notion of entrainment, is negatively correlated with
emotional bond. This finding is intuitively justified and
consistent with previous studies in psychology [32]. The
speech-based approach for analysis of interactions presented
in this work can be useful for guidance in conducting more
effective interviews in suicide prevention.

This work also offers a number of future directions. In the
nonlinear dynamical systems framework, we intend to develop
other measures of joint complexity, especially a measure that
can capture asymmetry in the interaction dynamics. Given the
asymmetric roles of the therapist and patient, such measures
could be highly useful. Moreover, analyzing complexity-based
measures may reflect characteristics of the patient, particularly
his or her ability to connect to the other person during a
conversation. A careful analysis of this might be informative
towards assessment of the suicide risk itself.
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