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Abstract

In this work we present a new version of our previously pub-
lished Optimal Stylization (OpS) algorithm for pitch styliza-
tion. Here we give a better perceptual representation of the pitch
curve for linguistics research. While the OpS algorithm pro-
duced good stylizations for naive listeners, when deployed in
a prosodic analysis tool, we observed that, under specific con-
ditions, important details were missed in the stylized curve to
an expert’s ear. Changes introduced in the dynamic tonal per-
ception model to solve these problems resulted in a simpler and
more robust model. We show how the new version of the OpS
algorithm is able to recover these situations while not signifi-
cantly altering the original OpS curves.
Index Terms: pitch stylization, tonal perception, prosody

1. Introduction
Prosodic research focuses on messages transmitted through the
use of intonational strategies. While the F0 curve is indeed the
main correlate of intonation, it does not represent what it is ac-
tually heard by the human ear. In [1, p. 25], it was stated that
No matter how systematically a phenomenon may be found to
occur through a visual inspection of F0 curves, if it cannot be
heard, it cannot play a part in communication. This led to the
definition of stylization as an approximation of the F0 curve by
means of linear segments. In [1, p.42], this was defined as a
sequence of segments that [. . . ] should eventually be auditorily
indistinguishable from the resynthesized original and it must
contain the smallest possible number of straight-line segments
with which the desired perceptual equality can be achieved.

Among the attempts to produce an account of the intona-
tional account, the MOMEL algorithm [2] has been widely used
in the literature. This algorithm does not produce a proper styl-
ization as its goal is to produce a model of the macroprosodic
component, which can be used together with the microprosodic
component the algorithm produces to rebuild the original pitch
curve. In this sense, a stylization should be intended as a lossy
filter for microprosody while the output of the MOMEL algo-
rithm does not discard the microprosodic component. Neverthe-
less, the macroprosodic profile obtained with MOMEL is usu-
ally considered as reference for stylization algorithms.

In [3], the concept of dynamic tones, or glissandos, was
used in order to produce a stylization of the pitch curve. The
Prosogram, a perceptually motivated representation of the pitch
curve [4] is based on this algorithm. This representation in-
cludes a segmentation of the considered utterance into syllables
to represent the pitch curve in terms of glissandos and static
tones. In [5, 6], the concept of syllables was used again to posi-
tion the linear segments used in the stylization. In [7], the pitch
stylization problem was treated as an optimization problem for

the first time by using a Dynamic Programming algorithm de-
signed to optimize the position of a predefined number of seg-
ments estimated on the basis of the findings presented in [8]. As
a quality measure, this algorithm used the statistical closeness
between the stylized curve and the original one.

In [9], we presented the OpS framework along with an in-
vestigation of the possibility of using prominence information
to reduce the number of points used to stylize non-prominent
areas. The OpS algorithm uses a divide et impera strategy to
balance a cost measure, based on the number of points used by
the stylized curve, and a quality measure. In [9], we showed
that statistical closeness does not necessarily reflect the results
of the listening test so, in [10], we presented an updated version
of the algorithm using a tonal perception model to compute the
quality measure. While this model has the same basis of [3],
it is dynamic in the sense that it uses the findings of [4] and
the indications coming from the experiments with the OpS ver-
sion using prominence annotation to avoid using rigid thresh-
olds. Also, by retaining the generic OpS framework, it explic-
itly takes into account the cost of the curve during computation,
closely following the definition of stylization.

In this paper, we summarize the parts of the OpS algorithm
that have been modified to obtain the new version, we high-
light the problems that the algorithm had in retaining certain
classes of details that are important for linguistics research and
we present the changes we introduced. Qualitative and quanti-
tative tests performed on the same corpus we used for the ob-
jective tests in our previous works show that these changes do
not alter the OpS curve on a large scale. By means of a case
study, we show that the details we were interested in recovering
are correctly represented by the new version of the algorithm.

2. The OpS algorithm
In [10], we presented a new version of the OpS algorithm sub-
stituting the original quality measure q(S, S̄) with a new mea-
sure based on a tonal perception model, following the approach
of [3]. This tonal perception model was dynamic in the sense
that it did not use rigid thresholds to model the human ear’s ca-
pabilities of perceiving dynamic tones (glissandos). This was
achieved by considering the effect energy movements have on
tonal perception (i.e. [11]) by taking as reference the Spectral
Constraint Hypothesis (SCH) [12] and by relying on a contin-
uous value to describe the glissando likelihood �g of a pitch
movement based on the findings of [4]. The reader is referred
to [10] for details regarding the computation of the �g value.
For reasons of space, in this paper we summarize only the parts
that we modified to obtain the new version of the algorithm.

First of all, we describe the segmentation strategy adopted
during the first phase of the divide et impera approach. Given a
generic pitch curve, the algorithm splitted this curve into two
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subcurves sharing and an endpoint by choosing the first lo-
cal maximum, if present, and choosing the midpoint otherwise.
This is because, by considering them later during the backtrack-
ing phase, tonal peaks were implicitly considered more impor-
tant than other points, as their removal influenced large portions
of the final curve.

During the backtracking step of the divide et impera
schema, the removal of the point shared by two adjacent sub-
curves A = [a1, . . . , an] and B = [b1, . . . , bm], with an = b1

was evaluated. The two possible mergings of the two sub-
curves were either the curve where the shared point was kept
S = [a1, . . . , an, b2, . . . , bm] or the curve where it was not
S̄ = [a1, . . . , an�1, b2, . . . , bm]. The overall quality function
F (S), computed as the balance between perceptual equality and
cost, was compared with F (S̄). If F (S̄) had a higher value than
F (S), the S̄ curve was passed to the next backtracking step.
For the sake of simplicity, in the following formulas we assume
that the two curves being compared have the same number of
points. Of course, when the removed point si is considered in
the S̄ curve, s̄i corresponds to the value obtained by linearly
interpolating si�1 and si+1 in tsi .

To compute the quality of the stylized curves, the algo-
rithm considered the accumulated difference between the origi-
nal curve and the proposed one in terms of glissando likelihood
for each of the segments in the curve, evaluating the risk of
introducing a glissando where a static tone was found and vice
versa. The distance D between a generic segment [si, si+1] and
its stylized counterpart [s̄i, s̄i+1] was computed as:

D([si, si+1], [s̄i, s̄i+1]) =

Dacc([si, si+1]) + �g([si, si+1]) � �g([s̄i, s̄i+1])
(1)

The quality of the S̄ curve with respect to the S curve was
computed as the weighted mean glissando likelihood accumu-
lated distance over the segments of the S̄ curve. The weights
were the time portions of the complete curve represented by
each segment, thus obtaining:

qg(S, S̄) =

n�1P
i=1

⇣
(1 � |D([si, si+1], [s̄i, s̄i+1])|)

tsi+1
�tsi

tsn�ts1

⌘ (2)

The model presented in [10] also takes into account a
qd(S, S̄) measure related to differential glissando perception
checking that a glissando, if present, is kept as it was. In this
paper we concentrate on qg(S, S̄) as the changes we made to
this function are simply replicated in qd(S, S̄).

Concerning the cost measure, in [9] it was computed as the
ratio between the number of points used by the stylized curve
and the number of points found in the original curve trans-
formed with a sigmoid function. After introducing the dynamic
tonal perception model, in [10] we reported a problem caus-
ing the quality measure to rapidly dominate the cost measure in
long, continuous pitch curves and causing the insertion of more
target points than necessary. In [10] we counterbalanced this
effect by introducing an empirically determined ↵ modifier to
augment the weight of the cost factor depending on the length
of the curve in the cost function. The cost function used by the
OpS algorithm is:

c(S, S̄) = 1 �
✓

1

1 + exp(�(x↵�0.5)
0.1

)

◆
(3)

where x is the ratio between the number of points used by
the stylized curve and the number of points used by the original
one.

3. Observed problems
The results of the perceptual tests reported in [9, 10], in which
naive listeners were recruited, indicated that the stylization pro-
posals of the OpS algorithm performed, in terms of quality, in
a similar way with respect to other approaches. The OpS algo-
rithm had the advantage of being parameter independent and it
was able to use less points by explicitly taking into account a
cost measure during computation. In [13], we included the OpS
algorithm in the Prosomarker tool: an instrument designed to
give a perceptual account of the pitch curves and to describe the
synchronization of the pitch targets with automatically detected
segmental events (syllable boundaries and nuclei). While using
this tool to describe simple intonation phenomena, we were able
to trace a number of recurring situations in which the OpS al-
gorithm was not able to capture specific classes of details from
the curve that appeared to be critical to an expert linguist’s ear.

1) In [10] we found that giving priority to local minima if
no local maxima can be found in the curve during the splitting
phase did not seem to introduce improvements. Not having this
rule introduced the possibility that a local minimum was eval-
uated very early during backtracking. As we have seen, this
implicitly assigns less importance to the point because the im-
pact of its removal is evaluated on a limited portion of the curve.
This was systematically noticed by the human experts evaluat-
ing the quality of the OpS curves while testing Prosomarker, as
they were able to detect small discrepancies both in timing and
in tonal level of lowering targets in the resynthesis with respect
to the original utterance.

2) The quality measure dominating the cost one in long
pitch segments was not completely addressed by the introduc-
tion of the ↵ parameter. Continuous pitch segments, longer than
the ones we tuned ↵ on, were found in other corpora: in these
segments the effect was strong enough to make the ↵ weighting
useless. The presence of the ↵ parameter is also less motivated
from a theoretical point of view than the rest of the model, thus
making the framework less reliable than we intended.

3) When local maxima split the curve in two subcurves that
are very unbalanced in length, the algorithm was unable to ade-
quately protect the smaller part of the curve. The quality of the
longer subcurve was considered more important than the qual-
ity of the shorter subcurve that, subsequently, was often over-
stylized. This was caused by the weighting of each segment
dependently of the fraction of time it stylized.

4. The SOpS algorithm
We now present the updates to the OpS algorithm we introduced
in order to address the problems we highlighted in the previous
section. The final model we obtain is simplified with respect
to the preceding version. For this reason, we will refer to the
updated version of the OpS algorithm as the Simplified Optimal
Stylization (SOpS) algorithm.

To address problem 1, we reintroduced the splitting rule
giving priority to local minima if no local maxima can be found.
By evaluating these points later during the backtracking phase,
the SOpS algorithm is able to protect low targets better than
the OpS algorithm. Problems 2 and 3 were both related to the
measure we used to evaluate shared endpoints removal during
backtracking. Specifically, having the whole subcurves influ-
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ence the quality measure introduced the problems related to
differences in the curves’ length. However, the removal of the
shared endpoint, while generically influencing the quality of the
two curves’ mergings, is more specifically related to the quality
of the two neighboring segments. Back to the preceding ex-
ample, given the A and B curves, the removal of the shared
point an = b1 only influences the quality of the [an�1, an] and
[b1, b2] segments. Therefore, having the quality evaluation of
the curves [a1, an�1] and [b2, bm] contributing to the evaluation
introduces an identical factor on both sides of the comparison
operator. Eliminating this factor makes the algorithm take into
account only the neighboring segments quality. By weighting
equally these two segments, we also remove the effect of longer
movements being considered more important than shorter ones.
Equation 2 is reformulated as

qg(S, S̄) =

{2 � |D([si�1, si], [s̄i�1, s̄i])|�

�|D([si, si+1], [s̄i, s̄i+1])|}/2

(4)

Also, by considering local minima earlier in the splitting
phase of the divide et impera schema, the midpoint split rule
is applied to segments that are either quasi-linear or parabolic.
In the first case, small differences are introduced by remov-
ing points while, in the second case, the midpoint split rule
rapidly produces quasi-linear segments. This way, early eval-
uated points are more concerned with small details mainly de-
pending on energy and pitch interactions, while lately evaluated
points are more related with the description of larger prosodic
events. Because of this distinction, it is not necessary to re-
tain the fine details produced by the early backtracking steps up
to the points controlling medium/long range pitch movements.
Since the changes introduced by removing these points become
very evident by delaying their evaluation to the latest steps of
the backtracking process, the influence of the fine details on the
decision process is not relevant. We therefore modified Equa-
tion 1 so that it does not keep track anymore of the preceding
stylization steps obtaining the new formulation

D([si, si+1], [s̄i, s̄i+1]) =

�g([si, si+1]) � �g([s̄i, s̄i+1])
(5)

Concerning the cost measure, in [9] we used the sigmoid
transformation of the ratio between the number of points used
by the stylization and the number of points used by the original
curve so that [9, p. 1994] values of the cost measure at one end
of the scale would not have been very different. As the impact
revealed itself to be negative with respect to the evaluation of the
quality/cost balance, we now consider the untransformed ratio
represented as x in Equation 3 as cost measure.

5. Test material
For the presented evaluations we employed the 382 files of the
prominence annotated TIMIT subset used in [14] to test auto-
matic methods for prominence detection. This dataset was cho-
sen for the curves cost evaluation we presented in [9] because
we needed a large set of prominence annotated speech sam-
ples to evaluate the impact of using prominence information
in a pitch stylization task. The same dataset was used for the
cost related tests in [10]. In this work, we use the same dataset
for qualitative, other than cost, evaluation because our goal is
to check that the new approach does not introduce detectable

changes on a large scale as we are interested in recovering only
the details the OpS algorithm was missing. The dataset consists
of 382 files containing 20 minutes of read speech extracted from
the TIMIT corpus.

6. Results
From the quantitative point of view, we considered the number
of points used by the SOpS algorithm with respect to OpS. The
SOpS algorithm, on the considered dataset, uses 3.46 points per
second (Pps) while the OpS algorithm uses 3.59 Pps. Table 1
shows a summary of the cost test between OpS, SOpS and an
older version of the OpS algorithm employing manual promi-
nence annotation called OpSProm [9].

Table 1: Cost test results.
OpS SOpS OpSProm

Points per second 3.59 3.46 3.47
Total points 4118 4007 4009

A paired t-test indicated that the difference in Pps between
OpS and SOpS is not statistically significant (p > 0.01). How-
ever, close inspection of the pitch curves where the OpS algo-
rithm introduced more points than necessary showed that the
SOpS algorithm does not suffer from this problem. The amount
of reduction observed (0.13 Pps) and the actual p-value (0.012)
are coherent with the goal we had of reducing the number of
points used only in specific areas. The performance of the SOpS
algorithm in terms of Pps is much more similar to the one we
obtained with the OpSProm algorithm. A paired t-test between
the Pps measures obtained by SOpS and OpSProm confirms this
(p > 0.9) with greater certainty with respect to the result we
presented in [10], where we stated (p. 205) that the difference
between OpS and OpSProm, while not significant (p > 0.01),
was to be taken carefully as the actual p-value was 0.0142.

From the qualitative point of view, a Wilcoxon test on the
differences between curves generated by the two algorithms
showed that the location shift is not significant (p > 0.4). The
size of the considered dataset makes it safe to assume that no
significant differences can be found between the curves pro-
posed by the two algorithms on a large scale. This result con-
firms that the modifications introduced by the SOpS algorithm
do not alter the stylized curve up to a statistically detectable de-
gree. Close inspection of the cases on which the new model is
intended to perform better, however, show that the details the
OpS algorithm was not able to retain are correctly modeled by
the SOpS algorithm.

7. Case study
In Figure 1, we show the detail of a pitch contour, the styl-
ization proposed by the OpS algorithm (dashed line) and and
the alternative proposed by the SOpS algorithm (dotted line)
along with the energy profile. While the two algorithms perform
identically on the first movement, the final rise/fall sequence is
described differently. Since the curve’s portion after the peak
is much shorter than the rest of the curve, protecting the final
lowering movement was considered not valuable enough by the
OpS algorithm. This decision is encouraged by the tonal per-
ception model as the rising movement preceding the final fall
is synchronized with a rising energy profile, thus lowering the
modeled glissando perception capability. The influence of sec-
tions that do not depend by the point being evaluated also plays
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Figure 1: A pitch contour (solid line) along with the OpS stylization (dashed line) and the SOpS one (dotted line). The stylized curves
are shifted by 2 Semitones each with respect to the original one for visualization purposes. Along with the pitch curve, the energy
profile of the considered speech fragment is shown.

a role, as discussed before. The SOpS algorithm, by consid-
ering only the neighboring subcurves and by weighting them
equally, is able to protect the final movement when evaluating
the peak point, as expected because of the synchronized falling
energy contour. The turning point before the rise is shifted 60ms
earlier because of the segmentation strategy giving more impor-
tance to local minima. This improves the representation of the
subcurve synchronized with the falling energy movement. The
following pitch rise, synchronized with a rising energy contour,
is more stylized than before, so no points are added. From per-
ceptual inspection, this choice appears to improve the overall
quality of the curve used in the example. The audio files of
the original utterance from which the provided example is ex-
tracted are attached to this paper together with the resynthesis
obtained with the OpS and SOpS curves. The magnitude of the
changes the SOpS algorithm introduces with respect to the OpS
curves are, in general, similar to the ones shown in the example.
This explains why the similarity test based on statistical close-
ness is not able to detect a significant difference between the
two algorithms. Being these changes important for an expert
listener, however, we are in line with out observation that sta-
tistical closeness measures are not good estimators of a stylized
curve’s quality [9].

8. Conclusions and future work
We have presented the SOpS algorithm, an evolution of the OpS
algorithm achieving better precision in stylizing specific details
of the pitch curve that are important for an expert’s ear. The

SOpS algorithm is based on a simplified version of the dynamic
tonal perception model used by the OpS algorithm. While the
curves produced by the SOpS algorithms do not differ in a sta-
tistically relevant way from the original OpS curves in a quali-
tative and quantitative sense, we have shown that close inspec-
tion of the details we were interested in recovering are cor-
rectly represented by the SOpS stylization, thus obtaining a bet-
ter representation of the perceived intonational profile that can
be used in prosodic research. Concerning the number of con-
trol points used, we have shown that the new algorithm obtains
results more similar to the ones we reported by using manual
prominence annotations without altering the produced curves
in a significant way. Therefore, the perceptual model behind
the SOpS algorithm produces representations of the pitch curve
that are both more precise and essential than the ones produced
by its predecessor on fine intonational details. The simplified
version of the dynamic tonal perception model will make it eas-
ier, in the future, to introduce the full range of changes indicated
by the SCH, as we are currently considering energy only. The
SOpS algorithm is implemented as a Python module of the Pro-
somarker tool, which is freely available for research purposes.
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