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ABSTRACT

This paper addresses the problem of enhancing a speech

signal corrupted by interfering signals. A new noise redu-

ction algorithm based on a logarithmic microphone array

and the multiresolution wavelet transform is described.

The proposed processing is applied in the time-spectral

domain with respect to the logarithmic subband de-

composition of the spectrum of each microphone signal.

The advantage of the proposed method is that both the

sub-array based beamforming operation and the post�lte-

ring are performed in the same transform domain without

adding FFT processing.

Computer simulation results show that our approach is ef-

fective for noise reduction. The technique can be used in

hands-free voice communication applications operating in

an adverse environment. In particular, it can be applied

to improve speech signal pick-up for voice communication

terminal.

1. INTRODUCTION

Microphone arrays are increasingly replacing the head-

mounted microphones as a speech acquisition system

in many applications like man-machine voice communi-

cation, hands-free telephone and teleconference. This

system often operates in an adverse environment where

interfering sources, such as ambient noise, the reverbera-

tion e�ect and speakers other than the desired one, are

present.

Three types of multi-microphone speech enhancement

systems are commonly used: the delay and sum beamfor-

ming, also called conventional beamforming, the adaptive

beamforming and noise reduction systems based on ada-

ptive post�ltering. All these approaches assume that the

direction of arrival (DOA) of the desired signal is known a

priori. In real applications, the DOA of the desired signal

is unknown and can only be estimated. The DOA esti-

mate of the desired signal is obtained from the time delays

between the microphone output signals. These time de-

lays are due to the spatial distribution of microphones.

Conventional beamforming is the simplest method [1,

2]. It consists in summing the microphone output signals

to improve signal reception in the presence of noise.

Unfortunately, this method requires a large number of

microphones, in case of a uniform array, to yield good

spatial resolution at low frequencies while minimizing the

gain in the direction of interference. However, this results

in narrow beams in high frequencies, making the system

very sensitive to the disadjustements.

The adaptive beamforming system is based on the le-

ast mean square (LMS) algorithm [3, 4]. Unfortunately,

the DOA estimate is usually biased and the method is

very sensitive to the estimation error. The convergence

problem cannot be solved easily. In addition, the system

needs a large number of �lter coe�cients to be applied

successfully to broadband signals and reverberant envi-

ronment. Furthermore, the number of degrees of freedom,

which is de�ned as the number of interfering signals that

the array can attenuate and that is given by the number of

microphones minus one, is an important parameter. Con-

sequently, the computational load becomes important for

real-time applications.

The noise reduction system is based on beamforming

and adaptive post�ltering operation. The post�ltering

often uses a Wiener �lter, applied in time or frequency

domain [5, 6]. This system works satisfactorily in case of

uncorrelated noise sources. However, a high spatial co-

herence between noise sources is measured, especially at

low frequencies. This makes the noise reduction system

unable to suppress noise at low frequencies. Of course,

this coherence can be decreased by imposing a large

microphone spacing, but this results in spatial aliasing.

Furthermore, these systems su�er from the distortion of

the desired signal and the introduction of a residual noise

with a musical structure in the enhanced signal, which

can be more annoying to a human listener than the origi-

nal background noise.

Substantial progress was made concerning the realiza-

tion of a microphone array system able to work correctly

in adverse conditions. However, we are still far from the

ultimate goal.

In this paper, we propose a new noise reduction system

for an array which has a small number of microphones

and is able to cover the speech bandwidth up to 4 KHz.

The proposed approach is based on the wavelet transform,

and the optimization of the post�lter with respect to this

wavelet transform is considered.
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In Sec. 2, we describe the microphone array used in this

work as speech acquisition system. We also justify the

use of the wavelet transform. Sec. 3 presents a derivation

of the minimum mean square error (MMSE) �lter design

based on the wavelet transformation. Sec. 4 addresses

the problem of the estimation of the Wiener �lter. The

description of the simulation method and the evaluation

of the system is done in Sec. 5. Finally, conclusions are

given in Sec. 6.

2. MICROPHONE ARRAY DESIGN

The microphone array is viewed as a discrete aperture. An

inappropriate choice of the microphone spacing, d, can in-

duce spatial aliasing in the form of grating lobes. These

lobes can cause an erroneous estimate of DOA of the de-

sired signal. In case of a uniform array, a large number of

microphones, M , is required to ensure su�cient directi-

vity while avoiding spatial aliasing in the de�ned speech

bandwidth. Since this solution is unsuitable for practical

reasons, a nonuniform (non symmetric) array with a lo-

garithmic distribution of microphones, M1;M2 � � �Mn is

proposed, where M1 is the reference microphone. It sho-

uld be noted that a better spatial selectivity is obtained

at low frequencies compared with the uniform array for

the same number of microphones, but the grating lobes

are still present.

To reduce the level of the grating lobes, a better perfor-

mance is obtained by splitting the logarithmic array into

uniform sub-arrays [7, 2], and passing each microphone

signal through a logarithmic �lter bank. Then, the be-

amforming operation is performed in each sub-array with

its appropriate frequency band [8]. The logarithmic array

proposed in this paper is formed by 6 microphones, where

the smallest distance between two adjacent microphones

is 4:3 cm, and 4 uniform sub-arrays (see Table 1).
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Figure 1. Wavelet transform �lter bank with octave-

band decomposition.

The multiresolution wavelet transform gives a loga-

rithmic decomposition of the frequency axis with a good

frequency resolution at low frequencies and good time re-

solution at high frequencies. If we observe the frequency

decomposition given in Table 1, we remark that this is an

octave-band structure which can be easily achieved using

the wavelet transform. A perfect reconstruction of the

signal can also be achieved and it is possible to reduce

the computational requirements thanks to a subsampling

factor as shown in Fig. 1. Thus, the wavelet transform is

very appropriate to the proposed decomposition.

Subarray Frequency band

M1,M5,M6 250 Hz - 500 Hz

M1,M4,M5 500Hz - 1000Hz

M1,M3,M5 1000 Hz - 2000 Hz

M1,M2,M3 2000 Hz - 4000 Hz

Table 1. Space-frequency decomposition.

Each sub-array consists of three microphones as shown

in Table 1. The spatial response of each sub-array has

a moderate beamwidth due to the small aperture. Limi-

tations associated with this small aperture can be over-

come by adding a post�ltering based on the Wiener �l-

ter. Furthermore, this moderate beamwidth is desirable

in case of a moving desired source since it allows small


uctuations of the desired speech source location without

steering the microphone array continuously.

To achieve the frequency decomposition of the

microphone signals using the wavelet transform, the

Daubechies's prototype �lters of �rst order are used for

the analysis and the synthesis task.

3. WAVELET TRANSFORM BASED

WIENER FILTERING

The wavelet transform (WT) based Wiener �ltering is

a special case of the transform domain Wiener �ltering,

very often associated with the discrete Fourier transform

(DFT). Fig. 2 shows a block diagram of the generalized

Wiener �lter where A can be any N � N orthogonal

transformation matrix. The signal, s(n), and the addi-

W

X=S+N
x=s+n

A A
-1

S s

Figure 2. Block diagram of the generalized Wiener �l-

tering.

tive noise, n(n), are assumed uncorrelated. To simplify

the formulation, we note s(n) and n(n) as data vectors s

and n respectively.

In the system adopted here, an orthogonal transform ope-

ration, utilizing a wavelet transform matrix, A, is perfor-

med on the corrupted input signal, x, yielding

X = A � x = As+An = S +N; (1)

where S, N and X are the WT coe�cients of the desired

speech, noise and corrupted signal respectively.

The resulting signal estimate from the WT Wiener �lter

is:

Ŝ =W
T
X =W

T (S +N): (2)

where WT is the transpose of the Wiener �lter matrix.

Then, the inverse WT is performed to obtain the signal



estimate

ŝ = A
�1
Ŝ (3)

In the design of the Wiener �lter, the �lter matrix, W,

is chosen so as to minimize the mean square value of the

estimation error (MSE). In other words:

min Efe2g = min Ef[s� ŝ]2g (4)

Using Eq. 3, the expression of the MSE can be written in

terms of WT domain quantities as

Efe2g = Ef[A�1
S �A�1

W(S +N)]2g (5)

Developing Eq. 5 and taking into account the fact that s

and n are uncorrelated, one obtains

Efe2g = Ef[Cs � 2WCs +WW(Cs +Cn)]g; (6)

where Cs and Cn are the data covariance matrices of the

WT of s and n respectively. The minimization of Eq. 6

yields the following optimum �lter matrix:

W =
Cs

Cs +Cn

(7)

In Wiener �ltering, as shown in Eq. 7, the minimum MSE

is independent of the type of the orthogonal transform

employed [9]. For practical reasons, we reduce the com-

putational requirements by performing a scalar Wiener

�lter. For this, we assume that Cs and Cn are diagonal

matrices. s and n are zero-mean processes. The �lter

matrix W becomes:

W = diag

�
EfS2g

EfS2g+ EfN2g

�
(8)

The scalar �lter is expressed as follows:

W =
EfS2g

EfX2g
(9)

By analogy, the quantities EfS2g and EfX2g are con-

sidered as the wavelet power spectra of the desired and

the noisy speech signals, respectively. We note that the

wavelet power spectra summarize the information in the

frequency spectrum by using just one value per octave

frequency band.

Of course, this kind of assumption corresponds to a

suboptimal design of the Wiener �lter and may lead to

some �ltering error. This is the price to pay for obtaining

a reasonable compromise between the optimality of the

�lter and the computational load [9, 10].

4. ADAPTIVE POSTFILTERING IN THE

WAVELET PACKET DOMAIN

The post�ltering operation is performed using the ortho-

gonal wavelet transform. The wavelet power spectra of X

and S are estimated using the microphone output signals

in the same manner as presented in [5]. We note that the
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Figure 3. Block diagram of the proposed system.

output of the conventional beamformer, performed accor-

ding to the sub-array decomposition, �X is used as the

input of the Wiener �lter. Thus, the output of the noise

reduction system is:

Ŝ�(n) = �X�(n)W�(n) � = 1; � � � ; L (10)

where L is the number of subbands and � is the index

of the subband. Fig. 3 shows the block diagram of the

proposed system. Obviously, the nonstationarity of the

signal is not neglected and the Wiener �lter is performed,

frame-by-frame and separately, in each subband.

By analogy to the transfer function of the Wiener �l-

ter proposed in Zelinski's and Simmer's methods [5, 6],

the Wiener �lter in the wavelet domain has the following

expression:

W�(n) =

2

M �M�1

PM�1

i=1

PM

j=i+1
Xi;�(n) �Xj;�(n)

1

M

PM

i=1
jXi;�(n)j2

(11)

where Xi;�(n) are the wavelet components of the ith

microphone signal in the spectral band of order �.

5. EXPERIMENTS AND RESULTS

Since the voice communication systems are destined to

the human listener, we use the Log Area Ratio (LAR) for

the performance evaluation. This objective measure, ba-

sed on LPC analysis, presents a good correlation with the

human auditory system.

We note that the problem of the estimation of DOA of the

desired signal is not addressed in this work. The DOA

of the desired signal is assumed to be known. Let us

also point out that for the octave-band decomposition,

Daubechies compactly supported wavelets with variable

lengths �lter lengths are used. No remarkable improve-

ment was obtained when using longer �lters. Thus, we

have limited the Daubechies �lters to the lower-order �l-

ters (2 coe�cients). We note that these �lters are equiva-

lent to Haar's wavelet. This provides a minimum delay in

the �lter banks making the system attractive for real-time

processing.

The proposed new algorithm was evaluated by perfor-

ming simulations with SNR decreasing down to 0dB and



with several types of noise sources. The simulations were

realized assuming to have a single speech source and a

single competitive noise source. With this approach, a

segmental SNR improvement up to 16dB is achieved and

Fig. 5 shows the achieved improvement in terms of LAR.

As far as the implementation is concerned, the method

exploits an e�cient and rapid algorithm for multiresolu-

tion �lter bank [11]. The usefulness of the proposed ap-

proach is proved by the high attenuation of noise level as

shown in Fig. 4).

Work is currently undertaken to obtain better approxi-

mations of the Wiener �lter applied in the wavelet domain

than the one used in this paper. In other words, the op-

timality of the �lter is still matter of search. The present

system is being tested in real situations and future work

will be devoted to con�rm the advantages of the proposed

method for hands-free acquisition systems operating in a

noisy environment.
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Figure 4. The noise reduction system's results: (a) ori-

ginal signal, (b) noisy signal, (c) reconstructed output.
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proposed algorithm.

6. CONCLUSION

We have presented a new noise reduction system based

on subband decomposition using the wavelet transform.

It compares favorably with the methods proposed before

(e.g. [5, 6]). No noticeable distorsion was perceived by

human listeners. Particularly, the resulting speech signal

is free from any musical noise. Finally, it should be noted

that one important aspect which has been addressed in

this paper is the multiresolution property. Consequently,

considerable computational savings can be obtained by

applying the multirate technique.
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