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ABSTRACT

Zero-crossings with peak amplitudes (ZCPA) model
motivated by human auditory periphery is simple com-
pared with other auditory models, but powerful speech
analysis tool for robust speech recognition in noisy
environments. In this paper, improvement in recog-
nition rate of ZCPA model is addressed by incorpo-
rating time-derivative features with several different
time-derivative window lengths. Experimental results
show that ZCPA has relatively higher sensitivity to
derivative window length than conventional feature
extraction algorithms. Also, experimental compar-
isons with several front-ends including some auditory-
like schemes in real-world noisy environments demon-
strate the robustness of ZCPA model. ZCPA model

shows superior performance compared with other front-

ends especially in noisy condition corrupted by white
Gaussian noise.

1. INTRODUCTION

Automatic speech recognition (ASR) is the leading
technology as a human-computer interface for real-
world applications. However there are various types
of background noises in real environments which de-
grade the performance of ASR systems, and there
have been many researches on modeling functional
roles of the peripheral auditory systems to design ro-
bust front-ends of ASR systems. ZCPA model, which
is relatively simple and efficient, was proposed as a
robust front-end for ASR in noisy environments and
was shown to be robust to additive white Gaussian
noise than both LPC-derived cepstrum and ensemble
interval histogram (EIH) model [1] in our previous
work [2]. In this paper, the performance of ZCPA
is evaluated as the time-derivative window length is
varied for improved recognition accuracy, and is com-
pared with other front-ends including some auditory-
like schemes as well as conventional ones in several
real-world noisy environments.

2. ZCPA ANALYSIS

The ZCPA model consists of a bank of bandpass co-
chlear filters and nonlinear stages at the output of

Figure 1: Block diagram of the zero-crossings with
peak amplitudes (ZCPA) model.

each cochlear filter as shown in Fig. 1. The cochlear
filterbank represents frequency selectivity at various
locations along a basilar membrane in the cochlea,
and is implemented with a bank of hamming band
pass filters. Auditory nerve fibers tend to fire in syn-
chrony with the stimulus, and the synchronous neural
firing is simulated as the upward-going zero-crossing
event of the signal at the output of each bandpass
filter, and the inverse of time interval between adja-
cent neural firings is represented as a frequency his-
togram. Further, each peak amplitude between suc-
cessive zero-crossings is detected, and this peak am-
plitude is used as a nonlinear weighting factor to a
frequency bin to simulate the relationship between
the stimulus intensity and the degree of phase-locking
of auditory nerve fibers. The histograms across all
filter channels are combined to represent the pseudo-
spectrum of the auditory model. As a result, fre-
quency information of the signal is obtained by zero-
crossing intervals of subband signals, and intensity
information is also incorporated by a peak detector
followed by a saturating nonlinearity.

On the other hand, EIH model utilizes level cross-
ings for frequency information. However, unlike ZCPA
model, multiple level-crossing detectors with different



level values are utilized both for frequency and inten-
sity information in EIH model. In implementing EIH,
one has to determine several parameters such as the
number of levels and level values, which are extremely
critical for reliable performance. However, there is no
elegant method to determine these values, except by
trial-and-error. The utilization of zero-crossings in
frequency estimation makes ZCPA model free from
unknown parameters associated with the level, more
efficient for calculations, and more robust to noise
than EIH model.

3. DATA BASE AND RECOGNITION
SYSTEMS

In consideration of practical applications of ASR, 50
Korean words for control of electric home appliances
including TV and VCR were chosen. The utterances
from 16 male speakers were sampled at 11.025 kHz
sampling rate with 12 bit precision via SONY ECM-
220T condenser microphone. 900 tokens of 9 speakers
were used as training of recognizers, and 1050 tokens
of the other speakers as test evaluations. There are
many kinds of noises in real environments which are
not stationary in general, and the performance eval-
uation in real situations may be very important for
practical applications of ASR. Factory noise and mili-
tary operations room noise, contained in NOISEX-92
CD ROMS [3], were added to the test data sets for
test evaluations in real situations. To evaluate the
recognizer-independent reliability of the front-ends,
both discrete hidden Markov model (HMM) and mul-
tilayer perceptron (MLP) are used as speech recog-
nizers. Each HMM is iteratively trained with Baum-
Welch algorithm based on maximum likelihood esti-
mation (MLE). The codebook of size 256 is trained
with training data in iterative manner. Although
there have been a lot of schemes proposed to apply
neural networks to speech recognition, the static MLP
recognizer with trace-segmentation algorithm [4] is
used for normalization of time scale without serious
computation time.

4. INCORPORATION OF DYNAMIC
FEATURES

It is well known that the utilization of time-derivative
features improves recognition accuracy not only in
clean condition but also in noisy conditions since the
time-derivative features are less affected than static
features in noisy environments and the time-derivative
features provide extra information over several frames
which cannot be handled by HMM-based recognizers.
However, unlike conventional feature processing tech-
niques, the length of time window is dependent on the
channel index in both EIH and ZCPA, i.e., it varies
inversely with characteristic frequency of the channel.
For example, the time window length of the channel

with lowest characteristic frequency spans up to 50
msec, which is quite long compared with the frame
rate of about 10 msec. Thus, it is highly recom-
mended to investigate the performance of the audi-
tory model when time-derivative features are incor-
porated to static features for practical applications
where higher recognition performance is required.

Fig. 2 summarizes recognition results of HMM
recognizer as the derivative window length is var-
ied when speech data is corrupted by white Gaussian
noise. Sixteen hamming bandpass filters are used as
the cochlear filterbank of ZCPA, and the frequency
range between 1.5 bark and 17.5 bark is divided into
16 frequency bins which are equally spaced by one
bark according to the critical-band rate. Twelve cep-
stral coeflicients of ZCPA and regression implementa-
tion of delta-cepstrum are computed every 10.15 msec
to constitute the feature vector. Two independent
codebooks are constructed for cepstrum and delta-
cepstrum respectively, under the assumption that the
static and the time-derivative features are statisti-
cally independent each other. Recognition rates ob-
tained by using static feature only (CEP) and by
using both static and dynamic features are shown
in the left column, and the right column represents
the inverse of performance improvement rate, v =
P;/(Psq — P;), where Py and P,; denote recogni-
tion rate obtained by using static features and by
using both static and dynamic features, respectively.
The improvements incurred by time-derivative fea-
tures are more eminent for noisy data than for clean
data for both MFCC and ZCPA. However the perfor-
mance of ZCPA is much more sensitive to the deriva-
tive window length compared with MFCC as shown
in right plots of Fig. 2. It is clear that the contri-
bution of time-derivative features is poor if the time-
derivative window length is too long (43 frames), and
the window length of 11 frames shows the best per-
formance on average for ZCPA while the difference in
performance improvement is negligible for MFCC.

On the other hand the results of MLP recognizer
is significantly different from that of HMM recognizer,
even though the detailed results are not shown in
this paper. There is no performance improvement by
utilizing time-derivative features for MLP recognizer.
Further, different time-derivative window lengths do
not make much differences in recognition rates. Since
the time-derivative features are obtained by linear
combination of static features over several frames, ap-
propriate time-derivative features, or the beyond of
those, can be represented internally in hidden repre-
sentations of MLP network with static features only.
Thus, it is sufficient to use only static features for
MLP recognition systems.
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Figure 2: The effect of augmenting time derivative features with several different derivative window lengths to

static features.

5. COMPARISON WITH OTHER
FRONT-ENDS

In this section, the performance of ZCPA is com-
pared with other front-ends including LPC cepstrum
(LPCC), MFCC, subband autocorrelation (SBCOR)
[5], perceptual linear prediction (PLP) [6], and EIH
under various types of noisy environments. Table 1
summarizes word error rate of both (a) HMM recog-
nizer and (b) MLP recognizer for the data corrupted
by several kinds of real-world noises. The gain of
the noise is adjusted to make the global SNR of 15
dB. The feature vector consists of static features and
their time-derivative coefficients for each front-end,
and the window length of time-derivative features is
set 11 frames. For LPCC, speech signal is first multi-
plied by hamming window of 20.3 msec duration ev-
ery 10.15 msec, and 8 LPC coefficients and 12 cepstral
coeflicients are obtained successively. For MFCC, 16
mel-scale triangular bandpass filters are used to ob-
tain 12 coefficients. To calculate SBCOR, the same
16 hamming bandpass filters used in both ZCPA and
EIH are utilized. In PLP processing, 16 critical-band
filters are used and LPC order is 8. Performance of
several EIHs with 7 level crossing detectors were eval-

uated by varying the number of levels and level values,
and only the best case among them is shown. In clean
condition PLP performs the best, but the difference
between all front-ends in error rate is quite small.
And the error rate of SBCOR is lower than that of
PLP when speech data is corrupted by white Gaus-
sian noise, but is higher under real-world noisy envi-
ronments on the contrary. The superiority of ZCPA
over the other front-ends is prominent in all kinds of
noisy conditions, and the difference in error rate be-
tween ZCPA and the other front-ends is maximum
(ZCPA - 13 % and LPCC - 88 %) when speech data
is corrupted by white Gaussian noise. However, for
speech data corrupted by military operations room
noise, the difference is reduced compared with the
other kinds of noisy environments. This may be due
to the characteristics of the military operations room
noise in which frequency band of speech noise is over-
lapped with the original input signal.

Since the incorporation of time-derivative features
does not improve recognition accuracy in the MLP
recognizer, results obtained with only static features
are shown in Table 1 (b). ZCPA outperforms all the
other features, as does in the HMM recognizer.



Table 1: Comparison of word error rates (%) of (a)
HMM recognizer and (b) MLP recognizer obtained by
using several features augmented by time-derivative
features under various types of noisy environments.
WGN, FAC, and MOP denote white Gaussian noise,
factory noise, and military operations room noise, re-
spectively. Only the results obtained with static fea-
tures are shown in (b).

(a) HMM results

| | Clean | WGN | FAC | MOP |

LPCC 5.5 88.0 | 474 | 46.5
MFCC 2.5 61.7 | 32.7 | 29.1
SBCOR 3.6 273 | 22.2 | 23.1
PLP 1.8 44.5 | 184 | 17.6
EIH 2.6 15.7 | 13.3 | 20.2
ZCPA 24 13.0 9.7 14.2

(b) MLP results

| [ Clean | WGN [ FAC | MOP |

LPCC 5.0 75.1 | 43.7 | 38.7
MFCC 3.0 58.2 | 35.2 | 26.7
SBCOR 4.0 30.2 | 25.2 | 28.7
PLP 1.6 383 | 21.3 | 20.2
EIH 1.7 11.9 9.5 9.2
ZCPA 2.2 8.3 6.6 6.8

6. CONCLUSIONS

The ZCPA model based on human auditory periph-
ery was proposed as a robust front-end for speech
recognition systems in noisy environments in our pre-
vious work. In this paper, several different lengths
of time have been tried to both MFCC and ZCPA,
and result in higher sensitivity of ZCPA to time-
derivative window length. And the time-derivative
window length of 11 frames shows better recognition
accuracy with HMM classifier, but does not make
much differences with MLP classifier. MLP classifier
shows better recognition rates than HMM classifier
in most of all the cases. Since different lengths of
bandpass signals are considered in computing ZCPA
output according to the characteristic frequency of
the channel while the frame rate is fixed, it may be
possible to apply different lengths of time-derivative
windows according to the characteristic frequency of
the channel.

Also, comparative evaluations of ZCPA model with
several feature extraction methods demonstrate the
robustness of ZCPA model in several real-world noisy
environments. The superiority of ZCPA over the other
front-ends is prominent in all kinds of noisy condi-
tions, especially when speech data is corrupted by

white Gaussian noise.
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