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Abstract

This paper presents a new statistical language model for speech
recognition, based on Generalized LR parsing. The proposed
model, the Abstracted Probabilistic GLR (APGLR) model, is an
extension of the existing structured language model known as
the Probabilistic GLR (PGLR) model. It can predict next words
from arbitrarily abstracted categories. The APGLR model is
also a generalization of the original PGLR model, because
PGLR can be considered to be a special case of APGLRs that
predict the next words from the least abstracted grammatical
categories, namely the terminal symbols. The selection of the
abstraction level is arbitrary; we show several strategies to de-
fine the level. The experimental results show that the proposed
model performs better than the original PGLR model for speech
recognition.

1. Introduction
Statistical language models have gained a reputation as pro-
viding the overall performance for speech recognition, and so
widely used in speech recognition systems today. Although n-
gram models have the simplest structure of the various statisti-
cal models, they have been widely used in these systems. Sev-
eral recent studies have tried to incorporate linguistic structures
into statistical language models. One of the advantages of such
structured models is they can take a long-distance correlation
between words into account.

Context Free Grammars (CFGs) have been widely used for
modeling natural language and therefore have been commonly
adopted as the structure of statistical models. Most methods to
introduce statistics into CFGs distribute a probability over pro-
duction rules. Probabilistic Context Free Grammars (PCFGs)
are CFGs having a probability distribution defined over all pro-
duction rules that share their left-hand side. But since PCFGs
have the drawback that they cannot capture context-sensitivity
over a rule, there have been various extensions of PCFGs to
include context-sensitivity. In NLP, several studies attempted
to extend the probabilities to treat the context over a rule[1].
On the other hand, in speech recognition, left-to-right mod-
els are preferred because they are compatible with the search
procedures of speech recognition. For example, Chelba and
Jelinek[2] proposed a language model that computes the proba-
bility of the next word based upon the grammatical constituents
already processed.

Aside from rule-based models, one of the main alternative
statistic models is that based on generalized LR parsing[3]. An
LR table is a representation of the CFG-parsing process that can
be pre-compiled before parsing, so it can be considered as an-
other representation of CFGs. Briscoe and Carroll [4] proposed

the direct distribution of probabilities to each action in an LR
table. Inui [5] presented the formalization of probabilistic GLR
parsing, which is called the Probabilistic GLR (PGLR) model.

One of the main advantages of a model based on LR parsing
is that it can naturally capture context-sensitivity based on the
nature of left-to-right parsing, in contrast with rule-based mod-
els. It can be used to predict words, given the state of parsing,
that correspond to the history of the words. It is also suitable for
use with the search procedures of speech recognition. Several
speech recognition system based on LR parsing have been de-
veloped (for example, [6]), so it should be feasible to introduce
PGLR models into these systems. Another significant advan-
tage is that the probabilistic parameters can be easily trained
simply by counting the frequency of the application of each ac-
tion by means of parsing training sentences.

In spite of these advantages of the PGLR model, it has been
little discussed relative to the speech recognition. This paper re-
lates the state of the LR table to the history of language models
and presents an extension of PGLR models towards language
models for speech recognition purpose. Our model is called
the Abstracted Probabilistic GLR model (APGLR model), be-
cause it can predict words from arbitrarily abstracted grammat-
ical categories. This model can be viewed as a generalization
of the PGLR model, since the PGLR model is a special case of
the APGLR model that predicts next words from the least ab-
stracted grammatical categories, namely the terminal symbols.
The formalization of the APGLR model will be shown in the
next section.

2. Formalism
2.1. Probabilistic GLR model

The Probabilistic GLR (PGLR) model is defined as one giving
the probability to the actions of the LR table. A GLR parsing
process can be seen as the sequences �0l1a1�1 � � � lnan�n, in
which li, ai, and �i are the lookahead symbol (the next termi-
nal symbol), the parser’s action, and the parser’s state (namely,
the parser’s stack in case of LR parsing), respectively. Suppose
the resulting parse tree T is obtained by the process, then the
probability of T is defined as follows.

P (T ) = P (�0l1a1�1l2 � � ��n�1lnan�n) (1)

� P (�0)

nY
i=1

P (liai�ij�i�1) (2)

The PGLR model[5] approximates the sequence as follows,

P (liai�ij�i�1) �

(
P (liaijsi�1) si�1 2 Ss

P (aijlisi�1) si�1 2 Sr

(3)
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where si is the state of the LR table appeared on the top of the
stack �i, and Ss and Sr is the set of states immediately after the
action ‘shift’ and ‘reduce’, respectively.1

Since the PGLR model has been studied in NLP, in which
the input word sequence can be observed unambiguously, let us
reconsider the meaning of the equation (3), in order to use it
as a language model for speech recognition. One of the most
important objectives of a language model is to predict the next
words, given the history of the word sequence already recog-
nized, in order to create the acoustic hypotheses used for the
successive pattern matching (HMM recognition) process. Con-
sidering (3), the first case (i.e. immediately after ‘shift’ states,
Ss) is decomposed as follows.

P (liaijsi�1) = P (lijsi�1)P (aijlisi�1): (4)

Since the term P (lijsi�1) represents the prediction of the next
word, the history is si�1, the state immediately after the ‘shift’
action. The other terms of (3) (i.e. P (aijlisi�1)) can be con-
sidered that they predict the action, i.e. the structure of the re-
sulting parse tree T .

Instead of using the states immediately after ‘shift’, states
after ‘reduce’ action can also be used for predicting the next
word, and sometimes they behave better for the history. There
seems to be no reason not to use these states if they are effective,
so from this point of view we have extended the original PGLR
model.

2.2. Abstracted Probabilistic GLR model

In (1), the action ai is ether ‘shift’ or ‘reduce’. From the action
sequence a1 � � � an, we can pick out the unique subsequence
that consists of all the ‘shift’ actions ax(1)ax(2) � � � ax(m), in
which the order is reserved. In addition, we assume x(0) =
0 and x(m) = n. Considering the first action a1 is ‘shift’,
equation (1) can be rewritten as follows.

P (T ) =P (�0lx(1)ax(1)�x(1)lx(1)+1ax(1)+1�x(1)+1 � � �

...

� � � lx(k)ax(k)�x(k)lx(k)+1ax(k)+1�x(k)+1 � � �

� � � lx(k+1)ax(k+1)�x(k+1) � � �

...

� � � lx(m)ax(m)�x(m))

(5)

Between the interval from an immediately after ‘shift’ state
to the next immediately before ‘shift’ state (i.e. �i(x(k � 1) <
i � x(k)), the lookahead symbols li(x(k) < i � x(k + 1))
are same (li = lx(k+1) for x(k) < i � x(k + 1)). Defining
this interval as one portion of the parsing, equation (5) can be
decomposed as follows.

= P (�0)

mY
k=1

P (lx(k�1)+1ax(k�1)+1�x(k�1)+1 � � �

� � � lx(k)ax(k)�x(k)

j �0 � � � lx(k�1)ax(k�1)�x(k�1))

(6)

= P (�0)

mY
k=1

P (lx(k)ax(k�1)+1�x(k�1)+1 � � � ax(k)�x(k)

j �0 � � � lx(k�1)ax(k�1)�x(k�1))

(7)

1For convenience sake, the initial state is classified in Ss

� P (�0)

mY
k=1

P (lx(k)ax(k�1)+1�x(k�1)+1 � � � ax(k)�x(k)

j �x(k�1))

(8)

In equation (8), we assume that the parsing process can be
predicted only by the immediately preceding parser’s state.

Each term in the product of (8) that corresponds to step k

can be decomposed as follows.

P (lx(k)ax(k�1)+1�x(k�1)+1 � � � ax(k)�x(k)j�x(k�1)) (9)

=P (lx(k)ax(k�1)+1ax(k�1)+2 � � � ax(k)j�x(k�1)) �

P (�x(k�1)+1 � � ��x(k)jlx(k)�x(k�1)ax(k�1)+1 � � � ax(k))

(10)

= P (lx(k)ax(k�1)+1ax(k�1)+2 � � � ax(k)j�x(k�1)) (11)

Notice that the second term of (10) is always 1, because the
sequence of the parser’s states �x(k�1)+1 � � ��x(k) is deter-
ministically predicted, giving both the immediately preceding
parser’s state �x(k�1) and the following sequence of the action
ax(k�1)+1 � � � ax(k) after �x(k�1).

Now we set y(k) that satisfies x(k�1) � y(k) < x(k) for
k = 1 � � �m. Giving y(k), equation (11) can be decomposed as
follows.

=P (ax(k�1)+1 � � � ay(k)j�x(k�1))

� P (lx(k)j�x(k�1)ax(k�1)+1 � � � ay(k))

� P (ay(k)+1 � � � ax(k)jlx(k)�x(k�1)ax(k�1)+1 � � �

� � � ay(k))

(12)

=f

y(k)Y
i=x(k�1)+1

P (aij�x(k�1)ax(k�1)+1 � � � ai�1)g

� P (lx(k)j�x(k�1)ax(k�1)+1 � � � ay(k))

� f

x(k)Y
j=y(k)+1

P (aj jlx(k)�x(k�1)ax(k�1)+1 � � � aj�1)g

(13)

Giving both the parser’s state �x(k�1) and the following se-
quence of actions ax(k�1)+1 � � � ai, the following parser’s state
�i is deterministically predicted. Thus the conditions of each
term in (13) approximate the preceding parser’s state (stack),
and furthermore, the state of the LR table appearing on the top
of the stack.

�f

y(k)Y
i=x(k�1)+1

P (aijsi�1)g

� P (lx(k)jsy(k))

� f

x(k)Y
j=y(k)+1

P (aj jlx(k)sj�1)g

(14)

Note that there are several variants of LR tables; the most
commonly used variants are a Simple LR, a Canonical LR, and a
Look-ahead LR (LALR)[7]. The above approximation is proper
for a Simple LR and a Canonical LR. However, it is not proper
for a LALR because some states of the LALR table are merged
in spite of the different states of parsing process, and they pre-
dict inadequate lookahead symbols. In order to deal with LALR
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Figure 1: GLR parsing process

tables, the equation (13) approximates in the following way,

�f

y(k)Y
i=x(k�1)+1

P (aijL�
x(k�1)ax(k�1)+1���ai�1

si�1)g

� P (lx(k)jL�x(k�1)ax(k�1)+1���ay(k)sy(k))

� f

x(k)Y
j=y(k)+1

P (aj jlx(k)sj�1)g

(15)

where L�
x(k�1)ax(k�1)+1���ai

is the set of the lookahead sym-
bols lx(k) that can do actions ax(k�1)+1 � � � ai from parser’s
state �x(k�1).

2.3. The Meaning of Abstracted PGLR Model

Figure 1 illustrates the process of GLR parsing using the LR ta-
ble whose lookahead symbols are phonemes. Such a phoneme-
based LR table can considerably suppress redundant search pro-
cess by sharing the prefix of phoneme sequence with multiple
words hypotheses. It can also allows us to treat allophones
within the LR table[8].

The term y(k) provides the abstraction level that is used for
the prediction of the next word. In figure 1, suppose the parser
already have processed the sequence “s o n o m i s e w a”, i.e.
at step 11 (k = 11). Since x(10) = 15 and x(11) = 19,
y(11) should be selected in 15 � y(11) < 19. If y(11) is
selected as y(11) = 15, the next word is predicted from the
state s15, which is the LR state immediately after recognizing
the phoneme ‘a’. If y(11) = 16, the word is predicted from the
s16, which is the state immediately after recognizing the word
‘WA’, the subject marker in Japanese. If y(11) = 17, the word
is predicted from s17, which is the state after recognizing a post-
position (prop). If y(11) = 18, then s18, after a postpositional
phrase (PP). 2

The strategy for selecting y(k)(k = 1 � � �m) varies. For
example, we can set y(k) = x(k) � 1 for all k, which results
in selecting the word prediction from the most abstracted gram-
matical category for each k. We also can choose the sort of
categories that are used to predict the next word by means of
selecting y(k)s that refer to the states of the LR table corre-
sponding to the categories. Moreover, we can dynamically se-
lect y(k)s in the midst of the parsing process. Several examples
of this selection will be shown in section 3.

2Note that the states of the LR table si are more informative than
the corresponding grammatical categories, since they are separated by,
i.e. have information about, the parsing process up to them.

Attributes G1 G2

rules 1302 616
words 385 384

coverage (%) 62.8 65.2
word perplexity (without probability) 9.80 23.8
average number of trees per sentence 1.05 1.98

Table 1: The attributes of grammars

In particular, when we set y(k) = x(k�1)(k = 1 � � �m), it
results in selecting the word prediction from the least abstracted
grammatical categories, which are terminal symbols, for each k.
In this case, equation (14) can be rewritten as follows.

=1 � P (lx(k)jsx(k�1)) �

x(k)Y
j=x(k�1)+1

P (ajjlx(k)sj�1)

=P (lx(k)ax(k�1)+1jsx(k�1))

�

x(k)Y
j=x(k�1)+2

P (aj jlx(k)sj�1)

(16)

This is equivalent to the original PGLR model (equation (3)),
because the first term corresponds to the immediately after
‘shift’ state(s 2 Ss) and the other terms correspond to the im-
mediately after ‘reduce’ states (s 2 Sr). This indicates that the
APGLR model is a generalization of the original PGLR model.

One of the advantages the APGLR model holds over the
PGLR model is its ability to cope with the data sparseness prob-
lem. The more a category is abstracted, the more samples for
statistics it tends to have. The APGLR model can be used
to smooth the probability by increasing the abstraction level.
Moreover, it is said that the local word history works well in a
phrase, but is unsuccessful at a phrase boundary. The APGLR
model can flexibly change the abstraction level of the history,
i.e., the less abstracted categories in phrases, and at the same
time, the more abstracted categories at phrase boundaries.

3. Experimental Results
We have implemented the APGLR model mentioned in section
2.2 into the existing speech recognition system based on LR
parsing algorithm[6]. The system is the one-pass decoder that
considers both the language model score and the acoustic model
score at the same time; the weighted score from the language
model is added to the acoustic score from HMMs at each end of
terminal symbols (in our case, phonemes). The integrated score
is considered for beam search at every frame.

The two grammars for a town guidance task[9] were used in
the following experiments. The attributes of the grammars are
shown in table 1. For each grammar, the LR table that has the
terminal symbols corresponding to phonemes was constructed.

The user utterances (about 4000 words) of the town guid-
ance corpus[9] were used to train our statistical models. We de-
termined the abstraction level (i.e. y(k) shown in section 2.2)
in several ways and obtained several APGLR models.

The model labeled ‘A(l)-PGLR’ is defined as follows:

y(k) =

(
x(k � 1) + l � � �x(k � 1) + l < x(k)

x(k)� 1 � � �x(k � 1) + l � x(k)
(17)

Note that ‘A(0)-PGLR’ is equivalent to the original PGLR
model. According to our design of grammars, phonemes,
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model G1 G2

A(0) 7.113 9.012
A(1) 6.961 9.029
A(2) 6.974 9.517
A(3) 7.017 10.04
A(1) 7.015 10.42
A(flex) 7.031 10.44
2-gram 8.736 10.21
3-gram 8.167 9.503

Table 2: Test set perplexity
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Figure 2: Word accuracy using G1

words and part of speech are used to predict the next word
in the ‘A(0)-PGLR’, ‘A(1)-PGLR’, ‘A(2)-PGLR’ models re-
spectively.

The model labeled ‘A(1)-PGLR’, which selects most ab-
stracted categories at any position, is defined as follows:

y(k) = x(k)� 1 (18)

In the midst of parsing process, the model labeled ’A(flex)-
PGLR’ dynamically, selects the level (x(k�1) � y(k) < x(k))
that has most reliable statistics, i.e., the one having the largest
samples.

A test set (623 words for G1 and 698 for G2 according
to the difference on the coverage) was selected apart from the
training set from the corpus. The test set perplexity was calcu-
lated from them (table 2). The word accuracy of them, obtained
through recognition experiments on a part of the test set (215
words), were also investigated (figure 2,3). All of the newly
proposed APGLR models improve the perplexity on the gram-
mar G1, but degrade on G2, although the differences are slight.
On the other hand, the word accuracy are improved by the pro-
posed models on both G1 and G2. On the whole, the abstracted
models with a fixed level, such as the A(2)-PGLR models, per-
formed better among our models.

4. Conclusion
A new statistical language model, the Abstracted Probabilistic
GLR model, is proposed. The APGLR model is both an ex-
tension and a generalization of the Probabilistic GLR model.
The formalization of the APGLR model is presented. We infor-
mally showed how it is expected to work well. The model can
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Figure 3: Word accuracy using G2

adopt an arbitrary level of abstracted categories at every next
word prediction, and we showed several strategies for setting
this level and defined several variations of the APGLR model.
The experimental results showed the improvement on the word
accuracy compared with the original PGLR model.
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